直線和圓交于兩點,則的中點坐
標(biāo)為(   )
                        
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
如圖所示,橢圓C 的兩個焦點為,短軸兩個端點為、.已知、、 成等比數(shù)列,,與 軸不垂直的直線 與C 交于不同的兩點、,記直線、的斜率分別為、,且
(Ⅰ)求橢圓 的方程;
(Ⅱ)求證直線 與 軸相交于定點,并求出定點坐標(biāo);
(Ⅲ)當(dāng)弦 的中點落在四邊形 內(nèi)(包括邊界)時,求直線 的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
若一動點F到兩定點、的距離之和為4.
(Ⅰ)求動點F的軌跡方程;
(Ⅱ)設(shè)動點F的軌跡為曲線C,在曲線C任取一點P,過點P作軸的垂線段PD,D為垂足,當(dāng)P在曲線C上運動時,線段PD的中點M的軌跡是什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知是圓上滿足條件的兩個點,其中O是坐標(biāo)原點,分別過A、B作軸的垂線段,交橢圓點,動點P滿足.(1)求動點P的軌跡方程;(2)設(shè)分別表示的面積,當(dāng)點P在軸的上方,點A在軸的下方時,求+的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知A(-2,0),B(2,0),動點P與A、B兩點連線的斜率分別為,且滿足·="t" (t≠0且t≠-1).
(1)求動點P的軌跡C的方程;
(2)當(dāng)t<0時,曲線C的兩焦點為F1,F(xiàn)2,若曲線C上存在點Q使得∠F1QF2=120O,
求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分16分)
如圖,已知拋物線的焦點為,是拋物線上橫坐標(biāo)為8且位于軸上方的點. 到拋物線準(zhǔn)線的距離等于10,過垂直于軸,垂足為,的中點為為坐標(biāo)原點).
(Ⅰ)求拋物線的方程;
(Ⅱ)過,垂足為,求點的坐標(biāo);
(Ⅲ)以為圓心,4為半徑作圓,點軸上的一個動點,試討論直線與圓的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

.以=1的焦點為頂點,頂點為焦點的橢圓方程為       (  )
A.    B.   C.      D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知拋物線的焦點與雙曲線的一個焦點重合,則該雙曲線的離心率為           (   )
A.B.C.D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過點F(0,3),且和直線相切的動圓圓心軌跡方程是(   )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案