已知二次函數(shù),且不等式對(duì)任意的實(shí)數(shù)恒成立,數(shù)列滿足,.

(1)求的值;

(2)求數(shù)列的通項(xiàng)公式;

(3)求證.

 

【答案】

(1)(2)

(3)

綜上有

【解析】

試題分析:⑴不等式對(duì)任意的實(shí)數(shù)恒成立.當(dāng)時(shí),,解得:

⑵由⑴知,,

,數(shù)列是以為首項(xiàng),2為公比的等比數(shù)列.

,從而數(shù)列的通項(xiàng)公式;

⑶由⑵知,

綜上有

考點(diǎn):不等式性質(zhì)數(shù)列求通項(xiàng)放縮法證明

點(diǎn)評(píng):本題第二問(wèn)是由數(shù)列遞推公式通過(guò)構(gòu)造新數(shù)列轉(zhuǎn)化為等比數(shù)列求出通項(xiàng),這是求通項(xiàng)的題目中經(jīng)常考到的題型,第三問(wèn)的證明主要利用的是放縮法,這種方法要求技巧性比較強(qiáng),對(duì)學(xué)生是一個(gè)難點(diǎn),不易掌握

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c.
(1)若a>b>c且f(1)=0,試證明f(x)必有兩個(gè)零點(diǎn);
(2)若對(duì)x1,x2∈R且x1<x2,f(x1)≠f(x2),方程f(x)=
12
[f(x1)+f(x2)]有兩個(gè)不等實(shí)根,證明必有一實(shí)根屬于(x1,x2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c.
(1)若a>b>c,且f(1)=0,是否存在m∈R,使得f(m)=-a成立時(shí),f(m+3)為正數(shù),若存在,證明你的結(jié)論,若不存在,說(shuō)明理由;
(2)若對(duì)x1x2∈R,且x1x2,f(x1)≠f(x2),方程f(x)=
12
[f(x1)+f(x2)]
有2個(gè)不等實(shí)根,證明必有一個(gè)根屬于(x1,x2).
(3)若f(0)=0,是否存在b的值使{x|f(x)=x}={x|f[f(x)]=x}成立,若存在,求出b的取值范圍,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c.
(1)若a>b>c,且f(1)=0,證明f(x)的圖象與x軸有2個(gè)交點(diǎn);
(2)在(1)的條件下,是否存在m∈R,使得f(m)=-a成立時(shí),f(m+3)為正數(shù),若存在,證明你的結(jié)論,若不存在,請(qǐng)說(shuō)明理由;
(3)若對(duì)x1,x2∈R,且x1<x2,f(x1)≠f(x2),方程f(x)=
12
[f(x1)+f(x2)]有兩個(gè)不等實(shí)根,證明必有一個(gè)根屬于(x1,x2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c.
(Ⅰ)若a>0且bc≠0,f(0)=-1,|f(-1)|=|f(1)|=1,試求f(x)的解析式;
(Ⅱ)若對(duì)x1、x2∈R且x1<x2,f(x1)≠f(x2),方程f(x)=
12
[f(x1)+f(x2)]
有兩個(gè)不等實(shí)根,證明必有一實(shí)根屬于(x1,x2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年山西大學(xué)附中高一第二次月考數(shù)學(xué)試卷 題型:解答題

(本小題滿分10分)

已知二次函數(shù)滿足;方程有兩個(gè)實(shí)根,且兩實(shí)根的平方和為10.

(1)求函數(shù)的解析式;

(2)若關(guān)于的方程在區(qū)間內(nèi)有兩個(gè)不等實(shí)根,求實(shí)數(shù)的取值范圍.

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案