(本小題滿分12分)如圖,橢圓的離心率為,直線所圍成的矩形ABCD的面積為8.
 
(Ⅰ)求橢圓M的標(biāo)準(zhǔn)方程;
(Ⅱ) 設(shè)直線與橢圓M有兩個(gè)不同的交點(diǎn)與矩形ABCD有兩個(gè)不同的交點(diǎn).求的最大值及取得最大值時(shí)m的值.
(I) .(II) 時(shí),取得最大值.

試題分析:(1)根據(jù)已知中的離心率和矩形的面積得到a,b,c的方程,進(jìn)而求解橢圓方程。
(2)將已知中的直線方程與橢圓方程聯(lián)立方程組,結(jié)合韋達(dá)定理得到根與系數(shù)的關(guān)系,那么得到弦長(zhǎng)公式,同時(shí)以及得到點(diǎn)S,T的坐標(biāo),進(jìn)而得到比值。
(I)……①
矩形ABCD面積為8,即……②
由①②解得:, ∴橢圓M的標(biāo)準(zhǔn)方程是.
(II),
設(shè),則,
當(dāng)  .
當(dāng)時(shí),有,

其中,由此知當(dāng),即時(shí),取得最大值.
點(diǎn)評(píng):解決該試題的關(guān)鍵是運(yùn)用代數(shù)的方法來解決解析幾何問題時(shí),解析幾何的本質(zhì)。能結(jié)合橢圓的性質(zhì)得到其方程,并聯(lián)立方程組,結(jié)合韋達(dá)定理和判別式的到比值。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

過橢圓的右焦點(diǎn)的直線交橢圓于于兩點(diǎn),令,則。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)是橢圓的兩個(gè)焦點(diǎn),點(diǎn)在橢圓上,且,則△ 的面積為          .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)設(shè)橢圓)經(jīng)過點(diǎn),其離心率.
(Ⅰ)求橢圓的方程;
(Ⅱ) 直線交橢圓于兩點(diǎn),且的面積為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

直線與橢圓相交于兩點(diǎn),該橢圓上點(diǎn)使的面積等于6,這樣的點(diǎn)共有(   )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題12分)已知,且點(diǎn)A和點(diǎn)B都在橢圓內(nèi)部,
(1)請(qǐng)列出有序數(shù)組的所有可能結(jié)果;
(2)記“使得成立的”為事件A,求事件A發(fā)生的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)點(diǎn)是曲線上的點(diǎn),,則(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分) 求滿足下列條件的橢圓的標(biāo)準(zhǔn)方程.
(1)焦點(diǎn)在坐標(biāo)軸上,且經(jīng)過兩點(diǎn)
(2)經(jīng)過點(diǎn)(2,-3)且與橢圓具有共同的焦點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,曲線是以原點(diǎn)O為中心、為焦點(diǎn)的橢圓的一部分,曲線是以O(shè)為頂點(diǎn)、為焦點(diǎn)的拋物線的一部分,A是曲線的交點(diǎn)
為鈍角.

(1)求曲線的方程;
(2)過作一條與軸不垂直的直線,分別與曲線依次交于B、C、D、E四點(diǎn),若G為CD中點(diǎn)、H為BE中點(diǎn),問是否為定值?若是求出定值;若不是說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案