精英家教網(wǎng)如圖,點(diǎn)P在⊙O的直徑BA的延長(zhǎng)線上,AB=2PA,PC切⊙O于點(diǎn)C,連接BC.
(1)求∠P的正弦值;
(2)若⊙O的半徑r=2cm,求BC的長(zhǎng)度.
分析:(1)連接OC,則PC⊥OC,又AB=2PA,則有OC=AO=AP=
1
2
PO,于是∠P=30°,可證sin∠P=
1
2

(2)連接AC,證得△CAO是正三角形,那么CA=r=2,再根據(jù)勾股定理可求得CB的長(zhǎng).
解答:精英家教網(wǎng)解:(1)連接OC,
∵PC切⊙O于點(diǎn)C,
∴PC⊥OC
又∵AB=2PA
∴OC=AO=AP=
1
2
PO
∴∠P=30°
∴sin∠P=
1
2
;
(2)連接AC,
∵AB是直徑,
∴∠ACB=90°,
∵∠COA=90°-30°=60°,
又∵OC=OA,
∴△CAO是正三角形.
∴CA=r=2,
∴CB=
42-22
=2
3
點(diǎn)評(píng):此題綜合考查了切線得性質(zhì)、三角函數(shù)的定義、勾股定理等知識(shí)點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,成都市準(zhǔn)備在南湖的一側(cè)修建一條直路EF,另一側(cè)修建一條觀光大道,大道的前一部分為曲線段FBC,該曲線段是函數(shù)y=Asin(ωx+
3
),(A>0,ω>0),x∈[-4,0]
時(shí)的圖象,且圖象的最高點(diǎn)為B(-1,3),大道的中間部分為長(zhǎng)1.5km的直線段CD,且CD∥EF.大道的后一部分是以O(shè)為圓心的一段圓弧DE.
(1)求曲線段FBC的解析式,并求∠DOE的大小;
(2)若南湖管理處要在圓弧大道所對(duì)應(yīng)的扇形DOE區(qū)域內(nèi)修建如圖所示的水上樂園PQMN,問點(diǎn)P落在圓弧DE上何處時(shí),水上樂園的面積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:南充高中2008-2009學(xué)年高二下學(xué)期第四次月考數(shù)學(xué)試題(理) 題型:044

如圖,已知PA垂直于⊙O所在平面,AB是⊙O的直徑,點(diǎn)C為圓周上異于A、B的一點(diǎn).

(1)若一個(gè)n面體中有m個(gè)面是直角三角形,則稱這個(gè)n面體的直度為.那么四面體P-ABC的直度為多少?說明理由;

(2)在四面體P-ABC中,AP=AB=1,設(shè).若動(dòng)點(diǎn)M在四面體P-ABC表面上運(yùn)動(dòng),并且總保持PB⊥AM.設(shè)為動(dòng)點(diǎn)M的軌跡圍成的封閉圖形的面積關(guān)于角的函數(shù),求取最大值時(shí),二面角A-PB-C的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:福建省福州三中2012屆高三第四次月考數(shù)學(xué)理科試題 題型:044

如圖所示,在直四棱柱ABCD-A1B1C1D1中,O1,O分別為正方形A1B1C1D1與正方形ABCD的中點(diǎn),且AB=3,A1A=4,經(jīng)過O1,O的平面與AB,DC、D1C1分別交于點(diǎn)M、N、R,又P為B1B上點(diǎn).

(1)求二棱錐P-MNR體積的最大值;

(2)在三棱錐P-MNR體積取最大值的條件下,求直線B1C與DR所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年湖北省高一下學(xué)期期末考試數(shù)學(xué)試卷 題型:解答題

(本小題13分) 如圖所示, PQ為平面的交線, 已知二面角為直二面角,  , ∠BAP=45°.

(1)證明: BCPQ;

(2)設(shè)點(diǎn)C在平面內(nèi)的射影為點(diǎn)O, 當(dāng)k取何值時(shí), O在平面ABC內(nèi)的射影G恰好為△ABC的重心?

(3)當(dāng)時(shí), 求二面角BACP的大小.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理)如圖a所示,某地為了開發(fā)旅游資源,欲修建一條連接風(fēng)景點(diǎn)P和居民區(qū)O的公路,點(diǎn)P所在的山坡面與山腳所在水平面α所成的二面角為θ(0°<θ<90°),且sinθ=,點(diǎn)P到平面α的距離PH=0.4(km).沿山腳原有一段筆直的公路AB可供利用.從點(diǎn)O到山腳修路的造價(jià)為a萬元/km,原有公路改建費(fèi)用為萬元/km.當(dāng)山坡上公路長(zhǎng)度為l km(1≤l≤2)時(shí),其造價(jià)為(l2+1)a萬元已知OA⊥AB,PB⊥AB,AB=1.5(km),OA=(km).

(1)在AB上求一點(diǎn)D,使沿折線PDAO修建公路的總造價(jià)最;

(2)對(duì)于(1)中得到的點(diǎn)D,在DA上求一點(diǎn)E,使沿折線PDEO修建公路的總造價(jià)最小;

(3)在AB上是否存在兩個(gè)不同的點(diǎn)D′,E′,使沿折線.PD′E′O修建公路的總造價(jià)小于(2)中得到的最小總造價(jià)?證明你的結(jié)論.

a)

第19題圖

(文)如圖b所示,直四棱柱ABCD-A1B1C1D1中,∠ADC=90°,△ABC為等邊三角形,且AA1=AD=DC=2.

(1)求AC1與BC所成角的余弦值;

(2)求二面角C1-BD-C的大;

(3)設(shè)M是BD上的點(diǎn),當(dāng)DM為何值時(shí),D1M⊥平面A1C1D?并證明你的結(jié)論.

第19題圖

查看答案和解析>>

同步練習(xí)冊(cè)答案