(本小題13分) 如圖所示, PQ為平面的交線(xiàn), 已知二面角為直二面角,  , ∠BAP=45°.

(1)證明: BCPQ;

(2)設(shè)點(diǎn)C在平面內(nèi)的射影為點(diǎn)O, 當(dāng)k取何值時(shí), O在平面ABC內(nèi)的射影G恰好為△ABC的重心?

(3)當(dāng)時(shí), 求二面角BACP的大小.

 

【答案】

(1)證明見(jiàn)解析

(2)k=1

(3)

【解析】(1)在平面內(nèi)過(guò)點(diǎn)CCEPQ于點(diǎn)E, 由題知點(diǎn)E與點(diǎn)A不重合, 連接EB.

     , 即點(diǎn)C在平面內(nèi)的射影為點(diǎn)E,

所以.

.

      , 故  BEPQ, 又

, ,

      平面EBC, 故BCPQ.

(2)由(1)知, O點(diǎn)即為E點(diǎn), 設(shè)點(diǎn)FO在平面ABC內(nèi)的射影, 連  接BF并延長(zhǎng)交AC于點(diǎn)D, 由題意可知, 若F是△ABC的重心, 則點(diǎn)DAC的中點(diǎn).

, 平面角為直二面角, , 由三垂線(xiàn)定理可知ACBF, 即ACBD, , 即k=1;反之, 當(dāng)k=1時(shí), 三棱錐OABC為正三棱錐, 此時(shí), 點(diǎn)O在平面ABC內(nèi)的射影恰好為△ABC的重心.

(3)由(2)知, 可以O為原點(diǎn), 以OB、OAOC所在的直線(xiàn)為x軸、y軸、z軸建立空間直角坐標(biāo)系Oxyz(如圖所示) 

不妨設(shè), 在RtOAB中, ∠ABO=∠BAO=45°, 所以BOAO, 由CACBkAB得, AC=2, , 則.

所以

設(shè)是平面ABC的一個(gè)法向量, 由

x=1, 得

易知是平面的一個(gè)法向量,

設(shè)二面角BACP的平面角為, 所以, 由圖可知,

二面角BACP的大小為.

 

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2014屆湖北武漢部分重點(diǎn)中學(xué)高二上學(xué)期期末考試文科數(shù)學(xué)卷(解析版) 題型:解答題

(本小題13分)如圖1,在三棱錐PABC中,平面ABC,D為側(cè)棱PC上一點(diǎn),它的正(主)視圖和側(cè)(左)視圖如圖2所示。

(1)證明:平面PBC

(2)求三棱錐DABC的體積;

(3)在的平分線(xiàn)上確定一點(diǎn)Q,使得平面ABD,并求此時(shí)PQ的長(zhǎng)。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆福建省高二上學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

(本小題13分)如圖,棱錐的底面是矩形,⊥平面,

(1)求證:⊥平面;

(2)求二面角的大小;

(3)求點(diǎn)到平面的距離.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆安徽宿松縣復(fù)興中學(xué)高一第二學(xué)期第三次月考數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題13分)

如圖,甲船以每小時(shí)海里的速度向正北方向航行,乙船按固定方向勻速直線(xiàn)航行,當(dāng)甲船位于處時(shí),乙船位于甲船的北偏西的方向處,此時(shí)兩船相距20海里.當(dāng)甲船航行20分鐘到達(dá)處時(shí),乙船航行到甲船的北偏西方向的處,此時(shí)兩船相距海里,問(wèn)乙船每小時(shí)航行多少海里?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年北京市東城區(qū)示范校高三第二學(xué)期綜合練習(xí)數(shù)學(xué)文卷 題型:解答題

(本小題13分)如圖,在四棱錐中,

底面是矩形,側(cè)棱PD⊥底面,

,的中點(diǎn),作于點(diǎn).

(1)證明:∥平面;

(2)證明:⊥平面.

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題13分)如圖是一塊邊長(zhǎng)為100米的正方形地皮,其中是一半徑為90米的扇形小山,是弧上一點(diǎn),其余都是平地,現(xiàn)一開(kāi)發(fā)商想在平地上建造一個(gè)有邊落在上的長(zhǎng)方形停車(chē)場(chǎng),求長(zhǎng)方形停車(chē)場(chǎng)的最大面積和最小面積。(請(qǐng)將結(jié)果精確到個(gè)位)【提示:

查看答案和解析>>

同步練習(xí)冊(cè)答案