選修4-1:幾何證明選講

如圖,D,E分別為△ABC的邊AB,AC上的點,且不與△ABC的頂點重合.已知AE的長為n,AD,AB的長是關于x的方程x2-14x+mn=0的兩個根.

(Ⅰ)證明:C,B,D,E四點共圓;

(Ⅱ)若∠A=90°,且m=4,n=6,求C,B,D,E所在圓的半徑.

答案:
解析:

  解:(Ⅰ)連接DE,根據(jù)題意在△ADE和△ACB中,

  AD×AB=mn=AE×AC,

  即.又∠DAE=∠CAB,從而△ADE∽△ACB

  因此∠ADE=∠ACB

  所以C,B,D,E四點共圓.

  (Ⅱ)m=4,n=6時,方程x2-14x+mn=0的兩根為x1=2,x2=12.

  故AD=2,AB=12.

  取CE的中點G,DB的中點F,分別過G,F(xiàn)作AC,AB的垂線,兩垂線相交于H點,連接DH.因為C,B,D,E四點共圓,所以C,B,D,E四點所在圓的圓心為H,半徑為DH.

  由于∠A=900,故GH∥AB,HF∥AC.HF=AG=5,DF=(12-2)=5.

  故C,B,D,E四點所在圓的半徑為5


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2013•太原一模)選修4一1:幾何證明選講
如圖,⊙O的直徑AB的延長線與弦CD的延長線相交于點P.E為⊙O上一點,
AC
=
AE
,DE交AB于點F.
(I)證明:DF•EF=OF•FP;
(II)當AB=2BP時,證明:OF=BF.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

選修4一1:幾何證明選講
如圖,C是以AB為直徑的半圓O上的一點,過C的直線交直線AB于E,交過A點的切線于D,BC∥OD.
(Ⅰ)求證:DE是圓O的切線;
(Ⅱ)如果AD=AB=2,求EB.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年河北省高三第一次高考仿真測試文科數(shù)學試卷(解析版) 題型:解答題

(本小題滿分10分)選修4-1:幾何證明選講

已知為半圓的直徑,為半圓上一點,過點作半圓的切線,過點,交半圓于點

(Ⅰ)求證:平分;

(Ⅱ)求的長.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年江蘇省、金陵中學、南京外國語學校高三三校聯(lián)考數(shù)學卷 題型:解答題

A.選修4-1:幾何證明選講

 

 
(本小題滿分10分)

如圖,設AB為⊙O的任一條不與直線l垂直的直徑,P是⊙O與l的公共點,AC⊥l,BD⊥l,垂足分別為C,D,且PC=PD.求證:(1)l是⊙O的切線;(2)PB平分∠ABD.

B.選修4-2:矩陣與變換

(本小題滿分10分)

已知點A在變換:T:→=作用后,再繞原點逆時針旋轉90°,得到點B.若點B坐標為(-3,4),求點A的坐標.

C.選修4-4:坐標系與參數(shù)方程

(本小題滿分10分)

求曲線C1:被直線l:y=x-所截得的線段長.

D.選修4-5:不等式選講

(本小題滿分10分)

已知a、b、c是正實數(shù),求證:≥.

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012屆河南省高二下學期期末考試數(shù)學 題型:解答題

(本小題滿分10分)選修4-1:幾何證明選講

 如圖,已知ABC中的兩條角平分線相交于

B=60,上,且。    

(Ⅰ)證明:四點共圓;

(Ⅱ)證明:CE平分DEF。

 

 

 

 

 

 

查看答案和解析>>

同步練習冊答案