設a>0,b>0,數(shù)學公式,則


  1. A.
    P>Q
  2. B.
    P<Q
  3. C.
    P≥Q
  4. D.
    P≤Q
D
分析:由已知可知,P>0,Q>0,然后通過比較P2-Q2的正負即可比較P,Q的大小
解答:∵a>0,b>0,
∴P>0,Q>0
∴P2-Q2==-=-≤0
∴P2≤Q2
∴P≤Q
故選D
點評:本題主要考查了不等式的大小的比較,屬于基礎試題
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2010•煙臺一模)設a>0,b>0.若
3
是3a與3b的等比中項,則
1
a
+
1
b
的最小值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆山東省日照市高三上學期第一次月考理科數(shù)學試卷(解析版) 題型:選擇題

對于集合M、N,定義M-N={x|x∈M且x∉N},M⊕N=(M-N)∪(N-M),設A={y|y=3x,x∈R},B={y|y=-(x-1)2+2,x∈R},則A⊕B等于  (  )

A.[0,2)                                                 B.(0,2]

C.(-∞,0]∪(2,+∞)                                  D.(-∞,0)∪[2,+∞)

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013年湖北省高考數(shù)學試卷(文科)(解析版) 題型:解答題

設a>0,b>0,已知函數(shù)f(x)=
(Ⅰ)當a≠b時,討論函數(shù)f(x)的單調性;
(Ⅱ)當x>0時,稱f(x)為a、b關于x的加權平均數(shù).
(i)判斷f(1),f(),f()是否成等比數(shù)列,并證明f()≤f();
(ii)a、b的幾何平均數(shù)記為G.稱為a、b的調和平均數(shù),記為H.若H≤f(x)≤G,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:陜西省高考真題 題型:解答題

已知函數(shù)f(x)=,g(x)=alnx,a∈R。
(1)若曲線y=f(x)與曲線y=g(x)相交,且在交點處有共同的切線,求a的值和該切線方程;
(2)設函數(shù)h(x)=f(x)-g(x),當h(x)存在最小值時,求其最小值φ(a)的解析式;
(3)對(2)中的φ(a)和任意的a>0,b>0,證明:。

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年廣東省汕頭市聿懷中學高三(上)11月月考數(shù)學試卷(文科)(解析版) 題型:選擇題

設a<0,b>0,不等式a<<b的解集為( )
A.(,0)∪(0,
B.(-,-
C.(-,0)∪(0,-
D.(-∞,)∪(,+∞)

查看答案和解析>>

同步練習冊答案