精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=,g(x)=alnx,a∈R。
(1)若曲線y=f(x)與曲線y=g(x)相交,且在交點處有共同的切線,求a的值和該切線方程;
(2)設函數h(x)=f(x)-g(x),當h(x)存在最小值時,求其最小值φ(a)的解析式;
(3)對(2)中的φ(a)和任意的a>0,b>0,證明:
解:(1)
由已知得
解得,x=e2
∴兩條曲線交點的坐標為(e2,e)
切線的斜率為
∴切線的方程為
(2)由條件知

(i)當a>0時,令h'(x)=0,解得x=4a2
∴當0<x<4a2時,h'(x)<0,h(x)在(0,4a2)上遞減
當x>4a2時,h'(x)>0,h(x)在(4a2,+∞)上遞增
∴x=4a2是h(x)在(0,+∞)上的唯一極值點,且是極小值點,從而也是h(x)的最小值點
∴最小值φ(a)= h(4a2)=2a-aln4a2=2a(1-ln2a)。
(ii)當a≤0時,
h(x)在(0,+∞)上遞增,無最小值。
故h(x)的最小值φ(a)的解析式為φ(a)= 2a(1-ln2a)(a >0)。
(3)由(2)知φ'(a)=-21n2a,對任意的a>0,b>0



故由①②③得
。
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函數f(x)的最小正周期;
(2)若函數y=f(2x+
π
4
)
的圖象關于直線x=
π
6
對稱,求φ的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)為定義在R上的奇函數,且當x>0時,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,時f(x)的表達式;
(2)若關于x的方程f(x)-a=o有解,求實數a的范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=aInx-ax,(a∈R)
(1)求f(x)的單調遞增區(qū)間;(文科可參考公式:(Inx)=
1
x

(2)若f′(2)=1,記函數g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在區(qū)間(1,3)上總不單調,求實數m的范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=x2-bx的圖象在點A(1,f(1))處的切線l與直線3x-y+2=0平行,若數列{
1
f(n)
}
的前n項和為Sn,則S2010的值為( 。
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)是定義在區(qū)間(-1,1)上的奇函數,且對于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,則實數a的取值范圍是
 

查看答案和解析>>

同步練習冊答案