【題目】已知函數(shù).
(1)若,求函數(shù)的極值和單調(diào)區(qū)間;
(2)若在區(qū)間上至少存在一點(diǎn),使得成立,求實(shí)數(shù)的取值范圍.
【答案】(1)的極小值為,的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;(2).
【解析】
試題分析:(1)當(dāng),由此求得時(shí),有極小值為,的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;(2),令,得到,若在區(qū)間上存在一點(diǎn),使得成立,即在區(qū)間上的最小值小于.對(duì)分成,,三類進(jìn)行分類討論,由此求得實(shí)數(shù)的取值范圍.
試題解析:
(1)當(dāng),令,得,
又的定義域?yàn)?/span>,由得,由,得,
所以時(shí),有極小值為1,
的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為................5分
(2),且,令,得到,若在區(qū)間上存在一點(diǎn),使得成立,即在區(qū)間上的最小值小于0.
當(dāng),即時(shí),恒成立,即在區(qū)間上單調(diào)遞減,
故在區(qū)間上的最小值為,
由,得,即............................8分
當(dāng),即時(shí),
①,則對(duì)成立,所以在區(qū)間上單調(diào)遞減,
則在區(qū)間上的最小值為,
顯然,在區(qū)間上的最小值小于0不成立,
②若,即時(shí),則有
0 | |||
極小值 |
所以在區(qū)間上的最小值,
由得,解得,即,
綜上,由①②可知:............................12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)為實(shí)數(shù),函數(shù).
(1)求證: 不是上的奇函數(shù);
(2)若是上的單調(diào)函數(shù),求實(shí)數(shù)的值;
(3)若函數(shù)在區(qū)間上恰有3個(gè)不同的零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的定義域?yàn)?/span>為的導(dǎo)函數(shù).
(1)求方程的解集;
(2)求函數(shù)的最大值與最小值;
(3)若函數(shù)在定義域上恰有2個(gè)極值點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),
(Ⅰ)求的單調(diào)區(qū)間和最小值;
(Ⅱ)討論與的大小關(guān)系;
(Ⅲ)求的取值范圍,使得對(duì)任意成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一項(xiàng)針對(duì)人們休閑方式的調(diào)查結(jié)果如下:受調(diào)查對(duì)象總計(jì)124人,其中女性70人,男性54人.女性中有43人主要的休閑方式是看電視,另外27人主要的休閑方式是運(yùn)動(dòng);男性中有21人主要的休閑方式是看電視,另外33人主要的休閑方式是運(yùn)動(dòng).
(1)根據(jù)以上數(shù)據(jù)建立一個(gè)的列聯(lián)表;
(2)根據(jù)下列提供的獨(dú)立檢驗(yàn)臨界值表,你最多能有多少把握認(rèn)為性別與休閑方式有關(guān)系?
獨(dú)立檢驗(yàn)臨界值表:
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)綿陽南山實(shí)驗(yàn)學(xué)校的500名教師的年齡進(jìn)行統(tǒng)計(jì)分析,年齡的頻率分布直方圖如圖所示,規(guī)定年齡在內(nèi)的為青年教師,內(nèi)的為中年教師,內(nèi)的為老年教師.
(1)求年齡,內(nèi)的教師人數(shù);
(2)現(xiàn)用分層抽樣的方法從中、青年中抽取18人進(jìn)行同課異構(gòu)課堂展示,求抽到年齡在內(nèi)的人數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校用“10分制”調(diào)查本校學(xué)生對(duì)教師教學(xué)的滿意度,現(xiàn)從學(xué)生中隨機(jī)抽取16名,以下莖葉圖記錄了他們對(duì)該校教師教學(xué)滿意度的分?jǐn)?shù)(以小數(shù)點(diǎn)前的一位數(shù)字為莖,小數(shù)點(diǎn)后的一位數(shù)字為葉):
(Ⅰ)若教學(xué)滿意度不低于9.5分,則稱該生對(duì)教師的教學(xué)滿意度為“極滿意”.求從這16人中隨機(jī)選取3人,至少有1人是“極滿意”的概率;
(Ⅱ)以這16人的樣本數(shù)據(jù)來估計(jì)整個(gè)學(xué)校的總體數(shù)據(jù),若從該校所有學(xué)生中(學(xué)生人數(shù)很多)任選3人,記表示抽到“極滿意”的人數(shù),求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的短軸長(zhǎng)為2,且函數(shù)的圖象與橢圓僅有兩個(gè)公共點(diǎn),過原點(diǎn)的直線與橢圓交于兩點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)點(diǎn)為線段的中垂線與橢圓的一個(gè)公共點(diǎn),求面積的最小值,并求此時(shí)直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知(),,且直線與曲線相切.
(1)求的值;
(2)若對(duì)內(nèi)的一切實(shí)數(shù),不等式恒成立,求實(shí)數(shù)的取值范圍;
(3)求證: ().
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com