已知A={x|x2-2x-8<0},B={x|x-a<0}且A∩B=∅,那么a的取值范圍是(  )
分析:首先求出集合A和集合B,然后由A∩B=∅構(gòu)造一個關(guān)于a的不等式,解不等式即可求出滿足條件的實(shí)數(shù)a的取值范圍.
解答:解:∵集合A={x|x2-2x-8<0}={x|-2<x<4},
B={x|x-a<0}={x|x<a}  且A∩B=∅,
∴a≤-2,故a的取值范圍(-∞,-2]
故選:A.
點(diǎn)評:本題考查的知識點(diǎn)是集合關(guān)系中的參數(shù)取值問題,其中根據(jù)已知條件構(gòu)造關(guān)于a的不等式,是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知A={x|x2+(P+2)x+4=0},M={x|x>0},若A∩M=∅,則實(shí)數(shù)P的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A={x|
x2-x-2x2+1
>0
},B={x|4x+p<0},且A?B,求實(shí)數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A={x|x2-2x-3<0},B={x|x<a},若A⊆B,則實(shí)數(shù)a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A={x|x2≥4},B={x|
6-x1+x
≥0},C={x||x-3|<3}
,若U=R,
(1)求(CUB)∪(CUC),
(2)求A∩CU(B∩C).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A={x|x2+6x+8≤0},B={x|kx2+(2k-4)x+k-4>0,x∈R},若A∪B=B,求k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案