如圖,橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
2
2
,x軸被曲線C2:y=x2-b截得的線段長等于橢圓C1的短軸長.C2與y軸的交點為M,過點M的兩條互相垂直的直線l1,l2分別交拋物線于A、B兩點,交橢圓于D、E兩點,
(Ⅰ)求C1、C2的方程;
(Ⅱ)記△MAB,△MDE的面積分別為S1、S2,若
S1
S2
=
5
8
,求直線AB的方程.
考點:直線與圓錐曲線的綜合問題
專題:綜合題,圓錐曲線的定義、性質與方程
分析:(Ⅰ)橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
2
2
,x軸被曲線C2:y=x2-b截得的線段長等于橢圓C1的短軸長,建立方程,求出幾何量,即可求C1、C2的方程;
(Ⅱ)設直線MA、MB的方程與y=x2-1聯(lián)立,求得A,B的坐標,進而可表示S1,直線MA、MB的方程與橢圓方程聯(lián)立,求得D,E的坐標,進而可表示S2,利用
S1
S2
=
5
8
,即可求直線AB的方程.
解答: 解:(Ⅰ)∵橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
2
2
,
∴a2=2b2
令x2-b=0可得x=±
b
,
∵x軸被曲線C2:y=x2-b截得的線段長等于橢圓C1的短軸長,
∴2
b
=2b,
∴b=1,
∴C1、C2的方程分別為
x2
2
+y2=1
,y=x2-1;   …(4分)
(Ⅱ)設直線MA的斜率為k1,直線MA的方程為y=k1x-1與y=x2-1聯(lián)立得x2-k1x=0
∴x=0或x=k1,∴A(k1,k12-1)
同理可得B(k2,k22-1)…(7分)
∴S1=
1
2
|MA||MB|=
1
2
1+k12
1+k22
|k1||k2|…(8分)
y=k1x-1與橢圓方程聯(lián)立,可得D(
4k1
1+2k12
,
2k12-1
1+2k12
),
同理可得E(
4k2
1+2k22
,
2k22-1
1+2k22
)                …(10分)
∴S2=
1
2
|MD||ME|=
1
2
1+k12
1+k22
|16k1k2|
(1+2k12)(1+2k22)
 …(12分)
S1
S2
=
(1+2
k
2
1
)(1+2
k
2
2
)
16
=
5+(
k
2
1
+
1
k
2
1
)
16

S1
S2
=
5
8
5+2(
k
2
1
+
1
k
2
1
)
16
=
5
8
解得
k
2
1
=2
k
2
1
=
1
2

∴直線AB的方程為y=
2
2
x
y=-
2
2
x
…(15分)
點評:本題考查橢圓的標準方程,考查直線與拋物線、橢圓的位置關系,考查三角形面積的計算,聯(lián)立方程,確定點的坐標是關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若(1-x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5;則f(x)=a2x2+a1x+a0的單調遞減區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列三個命題:
①在區(qū)間[0,1]內任取兩個實數(shù)x,y,則事件“x2+y2>1成立”的概率是1-
π
4

②函數(shù)f(x)關于(3,0)點對稱,滿足f(6+x)=f(6-x),且當x∈[0,3]時函數(shù)為增函數(shù),則f(x)在[6,9]上為減函數(shù);
③滿足A=30°,BC=1,AB=
3
的△ABC有兩解.
其中正確命題的個數(shù)為( 。
A、1B、2C、3D、0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列關于極限的計算,錯誤的是( 。
A、
lim
n→∞
2n2+n+7
5n2+7
=
lim
n→∞
2+
1
n
+
7
n2
5+
7
n2
=
2
5
B、
lim
n→∞
2
n2
+
4
n2
+…+
2n
n2
)=
lim
n→∞
2
n2
+
lim
n→∞
4
n2
+…+
lim
n→∞
2n
n2
=0+0+…+0=0
C、
lim
n→∞
n2+n
-n)=
lim
n→∞
n
n2+n
+n
=
lim
n→∞
1
1+
1
n
+1
=
1
2
D、已知an=
2-n(n為奇數(shù))
3-n(n為偶數(shù))
,則
lim
n→∞
(a1+a2+…+an)
=
2-1
1-2-2
+
3-2
1-3-2
=
19
24

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將曲線C1:(x-4)2+y2=4所有點的橫坐標不變,縱坐標變?yōu)樵瓉淼?span id="fzybteu" class="MathJye">
1
2
得到曲線C2,將曲線C2向左(x軸負方向)平移4個單位,得到曲線C3
(Ⅰ)求曲線C3的方程;
(Ⅱ)垂直于x軸的直線l與曲線C3相交于C、D兩點(C、D可以重合),已知A(-2,0),B(2,0),直線AC、BD相交于點P,求P點的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xoy中,以點P為圓心的圓與圓x2+y2-2y=0外切且與x軸相切(兩切點不重合).
(1)求動點P的軌跡方程;
(2)若直線mx-y+2m+5=0(m∈R)與點P的軌跡交于A、B兩點,問:當m變化時,以線段AB為直徑的圓是否會經(jīng)過定點?若會,求出此定點;若不會,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點分別為F1,F(xiàn)2,離心率為
2
2
,P是橢圓上一點,且△PF1F2面積的最大值等于2.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點M(0,2)作直線l與直線MF2垂直,試判斷直線l與橢圓的位置關系.
(Ⅲ)直線y=2上是否存在點Q,使得從該點向橢圓所引的兩條切線相互垂直?若存在,求點Q的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A,B是拋物線W:y=x2上的兩個點,點A的坐標為(1,1),直線AB的斜率為k,O為坐標原點.
(Ⅰ)若拋物線W的焦點在直線AB的下方,求k的取值范圍;
(Ⅱ)設C為W上一點,且AB⊥AC,過B,C兩點分別作W的切線,記兩切線的交點為D,求|OD|的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題中:①函數(shù)f(x)=sinx+
2
sinx
(x∈(0,π))
的最小值是2
2
;
②在△ABC中,若sin2A=sin2B,則△ABC是等腰或直角三角形;
③如果正實數(shù)a,b,c滿足a+b>c,則
a
1+a
+
b
1+b
c
1+c
;
④如果y=f(x)是可導函數(shù),則f′(x0)=0是函數(shù)y=f(x)在x=x0處取到極值的必要不充分條件.
其中正確的命題是
 

查看答案和解析>>

同步練習冊答案