【題目】設(shè)函數(shù)
(Ⅰ)求曲線 在點(diǎn) 處的切線方程;
(Ⅱ)若 對(duì) 恒成立,求實(shí)數(shù) 的取值范圍;
(Ⅲ)求整數(shù) 的值,使函數(shù) 在區(qū)間 上有零點(diǎn).

【答案】解:(Ⅰ) ,

,∴所求切線方程為 ,即

(Ⅱ)∵ ,對(duì) 恒成立,∴ ,

設(shè) ,令 ,得 ,令

上遞減,在 上遞增,

,∴

(Ⅲ)令 ,當(dāng) 時(shí), ,

的零點(diǎn)在 上,

,∴ 上遞增,又 上遞減,

∴方程 僅有一解 ,且 ,

,

∴由零點(diǎn)存在的條件可得 ,∴


【解析】(1)首先對(duì)原函數(shù)求導(dǎo),即可求出在點(diǎn) ( 1 , e ) 處的切線斜率,再代入點(diǎn)的坐標(biāo)即可求出切線的方程。(2)通過(guò)構(gòu)造函數(shù)并結(jié)合導(dǎo)數(shù)與函數(shù)的單調(diào)性即可求解。(3)結(jié)合導(dǎo)數(shù)與函數(shù)的單調(diào)性判斷出F ( x ) 在( 0 , + ∞ ) 上遞增,且F ( 1 ) >0,F(xiàn)() < 0,可知 F ( x ) 的零點(diǎn)屬于區(qū)間( , 1 )。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】共享單車是指由企業(yè)在校園、公交站點(diǎn)、商業(yè)區(qū)、公共服務(wù)區(qū)等場(chǎng)所提供的自行車單車共享服務(wù),由于其依托“互聯(lián)網(wǎng)+”,符合“低碳出行”的理念,已越來(lái)越多地引起了人們的關(guān)注.某部門為了對(duì)該城市共享單車加強(qiáng)監(jiān)管,隨機(jī)選取了100人就該城市共享單車的推行情況進(jìn)行問(wèn)卷調(diào)查,并將問(wèn)卷中的這100人根據(jù)其滿意度評(píng)分值(百分制)按照[50,60),[60,70),…,[90,100]分成5組,制成如圖所示頻率分直方圖.
(Ⅰ)求圖中x的值;
(Ⅱ)已知滿意度評(píng)分值在[90,100]內(nèi)的男生數(shù)與女生數(shù)的比為2:1,若在滿意度評(píng)分值為[90,100]的人中隨機(jī)抽取4人進(jìn)行座談,設(shè)其中的女生人數(shù)為隨機(jī)變量X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知冪函數(shù)為偶函數(shù).

(1)求的解析式;

(2)若函數(shù)在區(qū)間上為單調(diào)函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) ,
(1)求函數(shù)的圖象在點(diǎn) 處的切線方程;
(2)當(dāng) 時(shí),求證:
(3)若 對(duì)任意的 恒成立,求實(shí)數(shù) 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知命題 :直線 與拋物線 )沒(méi)有交點(diǎn);已知命題 :方程 表示雙曲線;若 為真, 為假,試求實(shí)數(shù) 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) ,當(dāng) 時(shí),函數(shù) 取得極值 .
(Ⅰ)求函數(shù) 的解析式;
(Ⅱ)若方程 有3個(gè)不等的實(shí)數(shù)解,求實(shí)數(shù) 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2﹣2ax+2b
(1)若a,b都是從0,1,2,3四個(gè)數(shù)中任意取的一個(gè)數(shù),求函數(shù)f(x)有零點(diǎn)的概率;
(2)若a,b都是從區(qū)間[0,3]中任取的一個(gè)數(shù),求f(1)<0成立時(shí)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,若 ,則 =

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)及圓.

(1)設(shè)過(guò)點(diǎn)的直線與圓交于兩點(diǎn),當(dāng)時(shí),求以線段為直徑的圓的方程;

(2)設(shè)直線與圓交于兩點(diǎn),是否存在實(shí)數(shù),使得過(guò)點(diǎn)的直線垂直平分弦?若存在,求出實(shí)數(shù)的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案