【題目】已知函數(shù) ,當 時,函數(shù) 取得極值 .
(Ⅰ)求函數(shù) 的解析式;
(Ⅱ)若方程 有3個不等的實數(shù)解,求實數(shù) 的取值范圍.

【答案】解:(I) ,由題意: , 解得 , 所求的解析式為

(Ⅱ)由(1)可得 ,令 ,得

時, ,當 時, ,當 時, ,因此,當 時,

有極大值 ,當 時, 有極小值 , 函數(shù) 的圖象大致如圖.

由圖可知:


【解析】(1)根據(jù)導數(shù)的意義,函數(shù)在某點有極值則該點的導函數(shù)的值為零,然后將x=2代入函數(shù)的解析式由此可得關于a與b的方程組,求解即可得出a與b的值,進而得到函數(shù)的解析式。(2)結合(1)中的結論,可得到函數(shù)的表達式根據(jù)導函數(shù)等于零求出函數(shù)的極值點,根據(jù)方程f ( x ) = k 有3個零點即可得到函數(shù)f(x) 與直線y=k有三個交點,根據(jù)題意作出函數(shù)的圖像,進而得到k的取值范圍。
【考點精析】認真審題,首先需要了解函數(shù)的極值與導數(shù)(求函數(shù)的極值的方法是:(1)如果在附近的左側,右側,那么是極大值(2)如果在附近的左側,右側,那么是極小值).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知是定義在上的奇函數(shù),當時,,則不等式的解集為(

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在南北方向有一條公路,一半徑為100m的圓形廣場(圓心為O)與此公路一邊所在直線l相切于點A.點P為北半圓。ɑPB)上的一點,過P作直線l的垂線,垂足為Q.計劃在△PAQ內(圖中陰影部分)進行綠化.設△PAQ的面積為S(單位:m2).
(1)設∠BOP=α(rad),將S表示為α的函數(shù);
(2)確定點P的位置,使綠化面積最大,并求出最大面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx=log44x+1+kxgx=log4a2xa),其中fx)是偶函數(shù).

1)求實數(shù)k的值;

2)求函數(shù)gx)的定義域;

(3)若函數(shù)fx)與gx)的圖象有且只有一個公共點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)
(Ⅰ)求曲線 在點 處的切線方程;
(Ⅱ)若 恒成立,求實數(shù) 的取值范圍;
(Ⅲ)求整數(shù) 的值,使函數(shù) 在區(qū)間 上有零點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ex , g(x)= x2+x+1,則與f(x),g(x)的圖象均相切的直線方程是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),且當x>0時,f(x)=log2x,g(x)=2log2(2x+a),a∈R
(1)求函數(shù)f(x)的解析式;
(2)若對任意x∈[1,4],f(4x)≤g(x),求實數(shù)a的取值范圍;
(3)設a>﹣2,求函數(shù)h(x)=g(x)﹣f(x),x∈[1,2]的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知:函數(shù)fx= a>0a≠1.

(Ⅰ)求函數(shù)fx)的定義域;

(Ⅱ)判斷函數(shù)fx)的奇偶性,并加以證明;

(Ⅲ)設a=,解不等式fx>0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如果函數(shù)f(x)=ax2+2x﹣3在區(qū)間(﹣∞,4)上是單調遞增的,則實數(shù)a的取值范圍是(
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案