【題目】已知拋物線C:的焦點為F,直線y=4y軸的交點為P,與C的交點為Q,且.

(1)求拋物線C的方程;

(2)F的直線lC相交于A,B兩點,若AB的垂直平分線C相交于M,N兩點,且A,M,B,N四點在同一個圓上,求直線l的方程.

【答案】1;(2x-y-1=0x+y-1=0.

【解析】

試題(1)由已知條件,先求點的坐標,再由及拋物線的焦半徑公式列方程可求得的值,從而可得拋物線C的方程;(2)由已知條件可知直線與坐標軸不垂直,故可設直線的點參式方程:,代入消元得.設由韋達定理及弦長公式表示的中點的坐標及長,同理可得的中點的坐標及的長.由于垂直平分線,故四點在同一圓上等價于,由此列方程可求得的值,進而可得直線的方程.

試題解析:(1)設,代入,得.由題設得,解得(舍去)或,∴C的方程為;(2)由題設知與坐標軸不垂直,故可設的方程為,代入.設

.故的中點為.又的斜率為的方程為.將上式代入,并整理得.設.故的中點為

由于垂直平分線,故四點在同一圓上等價于,從而,化簡得,解得.所求直線的方程為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】

在平面直角坐標系xOy中,點B與點A-1,1)關于原點O對稱,P是動點,且直線APBP的斜率之積等于.

(Ⅰ)求動點P的軌跡方程;

(Ⅱ)設直線APBP分別與直線x=3交于點M,N,問:是否存在點P使得△PAB△PMN的面積相等?若存在,求出點P的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,橢圓的右頂點為,左、右焦點分別為、,過點且斜率為的直線與軸交于點,與橢圓交于另一個點,且點軸上的射影恰好為點

1)求點的坐標;

2)過點且斜率大于的直線與橢圓交于兩點,若,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù) .

(1)當時,討論的單調(diào)性;

(2)若函數(shù)有兩個極值點,且,證明: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)若上單調(diào)遞增,求實數(shù)的取值范圍;

2)若時,求證:對于任意的,均有.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】閱讀如圖所示的程序框圖,若輸出的數(shù)據(jù)為141,則判斷框中應填入的條件為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知動點到兩點,的距離之和為4,點軸上的射影是C,.

1)求動點的軌跡方程;

2)過點的直線交點的軌跡于點,交點的軌跡于點,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知雙曲線的左、右焦點分別為、,過右焦點作平行于一條漸近線的直線交雙曲線于點,若的內(nèi)切圓半徑為,則雙曲線的離心率為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某文體局為了解“跑團”每月跑步的平均里程,收集并整理了2018年1月至2018年11月期間“跑團”每月跑步的平均里程(單位:公里)的數(shù)據(jù),繪制了下面的折線圖.根據(jù)折線圖,下列結(jié)論正確的是( )

A. 月跑步平均里程的中位數(shù)為6月份對應的里程數(shù)

B. 月跑步平均里程逐月增加

C. 月跑步平均里程高峰期大致在8、9月

D. 1月至5月的月跑步平均里程相對于6月至11月,波動性更小,變化比較平穩(wěn)

查看答案和解析>>

同步練習冊答案