【題目】已知拋物線C:的焦點為F,直線y=4與y軸的交點為P,與C的交點為Q,且.
(1)求拋物線C的方程;
(2)過F的直線l與C相交于A,B兩點,若AB的垂直平分線與C相交于M,N兩點,且A,M,B,N四點在同一個圓上,求直線l的方程.
【答案】(1);(2)x-y-1=0或x+y-1=0.
【解析】
試題(1)由已知條件,先求點的坐標,再由及拋物線的焦半徑公式列方程可求得的值,從而可得拋物線C的方程;(2)由已知條件可知直線與坐標軸不垂直,故可設直線的點參式方程:,代入消元得.設由韋達定理及弦長公式表示的中點的坐標及長,同理可得的中點的坐標及的長.由于垂直平分線,故四點在同一圓上等價于,由此列方程可求得的值,進而可得直線的方程.
試題解析:(1)設,代入,得.由題設得,解得(舍去)或,∴C的方程為;(2)由題設知與坐標軸不垂直,故可設的方程為,代入得.設則
.故的中點為.又的斜率為的方程為.將上式代入,并整理得.設則.故的中點為.
由于垂直平分線,故四點在同一圓上等價于,從而即,化簡得,解得或.所求直線的方程為或.
科目:高中數(shù)學 來源: 題型:
【題目】
在平面直角坐標系xOy中,點B與點A(-1,1)關于原點O對稱,P是動點,且直線AP與BP的斜率之積等于.
(Ⅰ)求動點P的軌跡方程;
(Ⅱ)設直線AP和BP分別與直線x=3交于點M,N,問:是否存在點P使得△PAB與△PMN的面積相等?若存在,求出點P的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,橢圓的右頂點為,左、右焦點分別為、,過點且斜率為的直線與軸交于點,與橢圓交于另一個點,且點在軸上的射影恰好為點.
(1)求點的坐標;
(2)過點且斜率大于的直線與橢圓交于兩點,若,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知動點到兩點,的距離之和為4,點在軸上的射影是C,.
(1)求動點的軌跡方程;
(2)過點的直線交點的軌跡于點,交點的軌跡于點,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知雙曲線的左、右焦點分別為、,過右焦點作平行于一條漸近線的直線交雙曲線于點,若的內(nèi)切圓半徑為,則雙曲線的離心率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某文體局為了解“跑團”每月跑步的平均里程,收集并整理了2018年1月至2018年11月期間“跑團”每月跑步的平均里程(單位:公里)的數(shù)據(jù),繪制了下面的折線圖.根據(jù)折線圖,下列結(jié)論正確的是( )
A. 月跑步平均里程的中位數(shù)為6月份對應的里程數(shù)
B. 月跑步平均里程逐月增加
C. 月跑步平均里程高峰期大致在8、9月
D. 1月至5月的月跑步平均里程相對于6月至11月,波動性更小,變化比較平穩(wěn)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com