如圖:在四棱錐P-ABCD中,底面ABCD是菱形,∠ABC=60°,PA⊥平面ABCD,點(diǎn)M、N分別為BC、PA的中點(diǎn),且PA=AB=2.
(Ⅰ)證明:BC⊥平面AMN;
(Ⅱ)求三棱錐N-AMC的體積.
考點(diǎn):直線與平面垂直的判定,棱柱、棱錐、棱臺(tái)的體積
專題:空間位置關(guān)系與距離
分析:(Ⅰ)根據(jù)四邊形ABCD為含有60°角的菱形,證出△ABC為正三角形,從而得到BC⊥AM.由PA⊥平面ABCD,證出PA⊥BC,結(jié)合線面垂直的判定定理,證出BC⊥面AMN.
(Ⅱ)由NA⊥平面AMC,NA=1,S△AMC=
1
2
S△ABC
=
1
2
×(
1
2
×2×2×sin60°)
=
3
2
,能求出三棱錐N-AMC的體積.
解答: (Ⅰ)證明:∵四邊形ABCD為菱形,∴AB=BC
又∵∠ABC=60°,∴△ABC為正三角形,得AB=BC=CA
∵M(jìn)是BC的中點(diǎn),∴BC⊥AM
∵PA⊥平面ABCD,BC?平面ABCD,∴PA⊥BC
∵PA、AM是平面AMN內(nèi)的相交直線,
∴BC⊥面AMN.
(Ⅱ)解:∵∠ABC=60°,PA⊥平面ABCD,
點(diǎn)M、N分別為BC、PA的中點(diǎn),且PA=AB=2,
∴NA⊥平面AMC,NA=1,
S△AMC=
1
2
S△ABC
=
1
2
×(
1
2
×2×2×sin60°)
=
3
2

∴三棱錐N-AMC的體積:
V=
1
3
×S△AMC×NA
=
1
3
×
3
2
×1
=
3
6
點(diǎn)評(píng):本題在四棱錐中證明線面垂直,并探索線面平行的存在性問題.著重考查了三角形中位線定理、平行四邊形的判定與性質(zhì)和空間線面平行與線面垂直的判定等知識(shí),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若對(duì)于一切實(shí)數(shù)x,不等式|2x-1|+|1-x|≥|x|•|2a+1|恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2|x+1|-x.
(Ⅰ)根據(jù)絕對(duì)值和分段函數(shù)知識(shí),將f(x)寫成分段函數(shù);
(Ⅱ)在如圖的直角坐標(biāo)系中畫出函數(shù)f(x)的圖象:
(Ⅲ)根據(jù)圖象,寫出函數(shù)f(x)的單調(diào)區(qū)間、值域.(不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)離心率為
1
2
,短軸長(zhǎng)為2,直線l:y=x+m,
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)當(dāng)直線l與橢圓有公共點(diǎn)時(shí),求實(shí)數(shù)m的取值范圍;
(3)若直線l過橢圓右焦點(diǎn),并與橢圓交于A、B兩點(diǎn),求弦AB之長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=lg(|x+1|+|x-a|-2)(a∈R)
(1)當(dāng)a=-2時(shí),求函數(shù)f(x)的定義域;
(2)若函數(shù)f(x)的定義域?yàn)镽,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2+xlnx(a∈R)的圖象在點(diǎn)(1,f(1))處的切線與直線x+3y=0垂直.
(Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)求證:當(dāng)n>m>0時(shí),lnn-lnm>
m
n
-
n
m
;
(Ⅲ)若存在k∈Z,使得f(x)>k恒成立,求實(shí)數(shù)k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2014年巴西世界杯的周邊商品有80%左右為“中國(guó)制造”,所有的廠家都是經(jīng)過層層篩選才能獲此殊榮.甲、乙兩廠生產(chǎn)同一產(chǎn)品,為了解甲、乙兩廠的產(chǎn)品質(zhì)量,以確定這一產(chǎn)品最終的供貨商,采用分層抽樣的方法從甲、乙兩廠生產(chǎn)的產(chǎn)品中分別抽出取14件和5件,測(cè)量產(chǎn)品中的微量元素x,y的含量(單位:毫克).下表是乙廠的5件產(chǎn)品的測(cè)量數(shù)據(jù):
編號(hào)12345
x169178166175180
y7580777081
(1)已知甲廠生產(chǎn)的產(chǎn)品共有98件,求乙廠生產(chǎn)的產(chǎn)品數(shù)量;
(2)當(dāng)產(chǎn)品中的微量元素x,y滿足x≥175,且y≥75時(shí),該產(chǎn)品為優(yōu)等品.用上述樣本數(shù)據(jù)估計(jì)乙廠生產(chǎn)的優(yōu)等品的數(shù)量;
(3)從乙廠抽出的上述5件產(chǎn)品中,隨機(jī)抽取2件,求抽取的2件產(chǎn)品中優(yōu)等品數(shù)ξ的分布列及其均值(即數(shù)學(xué)期望).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示的多面體中,ABCD是菱形,BDEF是矩形,ED⊥平面ABCD,∠BAD=
π
3
,AD=2.
(Ⅰ)求證:平面FCB∥平面AED;
(Ⅱ)若二面角A-EF-C的大小為
π
3
,求線段ED的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC的內(nèi)角A,B,C對(duì)邊分別為a,b,c,且滿足sinA:sinB:sinC=2:3:4,則
a+b
b+c
=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案