【題目】城市100戶居民的月平均用電量單位:度,以,,,,分組的頻率分布直方圖如圖

求直值;

月平均用電量的眾數(shù)和中位數(shù);

月平均用電量為,,,四組用戶中,用分層抽樣的方法抽取11戶居民,則月平均用電量在用戶中應(yīng)抽取多少戶?

【答案】眾數(shù),中位數(shù)

【解析】

試題分析:由頻率分布直方圖可得;平均用電的眾數(shù)是,中位數(shù)兩側(cè)數(shù)據(jù)所占頻率各為,可設(shè)中位數(shù)為,由;依題可得平均用電量為,,用戶數(shù),可知抽取比例為,故月平均用電量在用戶應(yīng)抽取

試題解析:得:方圖中

平均用電的眾數(shù)是;

因為,所以月平均用電量的中位數(shù)內(nèi),設(shè)中位數(shù)為,

,所以月平均用電量的中位數(shù)是224

平均用電量為用戶有,月平均用電量為用戶有,月平均用電量為用戶有,月平均用電量為用戶有,抽取比例,

以月平均用電量在用戶應(yīng)抽取

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,橢圓上任意一點到右焦點的距離的最大值為.

1)求橢圓的方程;

2)已知點是線段上異于的一個定點(為坐標原點),是否存在過點且與軸不垂直的直線與橢圓交于兩點,使得,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,點E為正方形ABCDCD上異于點C,D的動點,將ADE沿AE翻折成SAE,使得平面SAE平面ABCE,則下列三個說法中正確的個數(shù)是

存在點E使得直線SA平面SBC

平面SBC內(nèi)存在直線與SA平行

平面ABCE內(nèi)存在直線與平面SAE平行

A.0 B.1 C.2 D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高三年級在高校自主招生期間,把學(xué)生的平時成績按百分制折算并排序,選出前300名學(xué)生,并對這300名學(xué)生按成績分組,第一組,第二組,第三組,第四組,第五組,如圖為頻率分布直方圖的一部分,其中第五組、第一組、第四組、第二組、第三組的人數(shù)依次成等差數(shù)列

I請在圖中補全頻率直方圖;

II大學(xué)決定在成績高的第4,5組中用分層抽樣的方法抽取6名學(xué)生,并且分成2組,每組3人進行面試,求95分包括95分以上的同學(xué)被分在同一個小組的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點,橢圓的離心率為是橢圓的焦點,直線的斜率為為坐標原點.

()的方程;

)設(shè)過點的直線相交于兩點,當(dāng)的面積最大時,求的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校從高年級學(xué)生中隨機抽取50名學(xué)生,將他們的期中考試數(shù)學(xué)成績(滿分100分,成績均為不低于40分的整數(shù))分成六段:[40,50),[50,60),…,[90,100],得到如圖所示的頻率分布直方圖.

(1)若該校高年級共有學(xué)生1000人,試估計成績不低于60分的人數(shù);

(2)該校高二年級全體學(xué)生期中考試成績的眾數(shù)、中位數(shù)和平均數(shù)的估計值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項和Sn=3n2+8n,{bn}是等差數(shù)列,且an=bn+bn1.

(1)求數(shù)列{bn}的通項公式;

(2)cn,Tn是數(shù)列{cn}的前n項和,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的最小值為0,其中,設(shè)

1的值;

2對任意,恒成立,求實數(shù)的取值范圍;

3討論方程上根的個數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩位數(shù)學(xué)老師組隊參加某電視臺闖關(guān)節(jié)目,共3關(guān),甲作為嘉賓參與答題,若甲回答錯誤,乙作為親友團在整個通關(guān)過程中至多只能為甲提供一次幫助機會,若乙回答正確,則甲繼續(xù)闖關(guān),若某一關(guān)通不過,則收獲前面所有累積獎金.約定每關(guān)通過得到獎金2000元,設(shè)甲每關(guān)通過的概率為,乙每關(guān)通過的概率為,且各關(guān)是否通過及甲、乙回答正確與否均相互獨立.

1求甲、乙獲得2000元獎金的概率;

2設(shè)表示甲、乙兩人獲得的獎金數(shù),求隨機變量的分布列和數(shù)學(xué)期望

查看答案和解析>>

同步練習(xí)冊答案