設(shè)全集為R,集合A={x|lgx<0},B={x|
x+1
2x-1
≤0},則A∩∁UB=
 
考點(diǎn):交、并、補(bǔ)集的混合運(yùn)算
專題:三角函數(shù)的求值
分析:求出A與B中不等式的解集,求出A與B補(bǔ)集的交集即可.
解答: 解:由A中不等式變形得:lgx<0=lg1,得到0<x<1,
∴A=(0,1),
由B中不等式變形得:(x+1)(2x-1)≤0,
解得:-1≤x<
1
2
,即B=[-1,
1
2
),
∵U=R,∴∁UB=(-∞,-1)∪[
1
2
,+∞),
則A∩(∁UB)=[
1
2
,1),
故答案為:[
1
2
,1)
點(diǎn)評(píng):此題考查了交、并、補(bǔ)集的混合運(yùn)算,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某學(xué)生離家去學(xué)校,由于怕遲到,所以一開始就跑步,等跑累了再走余下的路程,在下圖中縱軸表示離家的距離,橫軸表示出發(fā)后的時(shí)間,則圖中四個(gè)圖形中較符合該學(xué)生走法的是  ( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算下列各式的值:
(1)log3
427
3
+log927+21+log23
;
(2)0.027-
1
3
-(-
1
6
)-2+2560.75+(
1
3
-1
)0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中,真命題是( 。
A、?x0∈R,ex0≤0
B、a+b=0的充要條件是
b
a
=-1
C、?x∈R,2x>x2
D、a>1,b>1是ab>1充分條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知|
a
|=1,
a
b
=2,(
a
-
b
)(
a
+
b
)=-15,求
(1)
a
b
的夾角.
(2)
a
-
b
a
+
b
的夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知不等式2<2x<8的解集為A,不等式log0.5x<log0.52的解集為B,
(1)求A,B;
(2)求;A∪B;∁RA;
(3)若C={x|x>a},且(A∩B )⊆C求a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知梯形ABCD的對(duì)角線AC和BD相交于P點(diǎn),OP的延長(zhǎng)線交BC于G,兩腰BA,CD的延長(zhǎng)線交于O點(diǎn),EF∥BC且EF過P點(diǎn).證明:
(1)EP=PF;
(2)OG平分AD和BC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在空間四邊形ABCD中,AB=2,BC=3,BD=2
3
,CD=3,∠ABD=30°,∠ABC=60°,求AB與CD的夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一家賓館裝修時(shí)需安裝兩種大小不同的門窗玻璃,大號(hào)玻璃需260塊,小號(hào)玻璃需720塊,已知商店出售的甲、乙兩種型號(hào)玻璃,它們每張可同時(shí)裁出大小號(hào)的玻璃塊數(shù)如表:
型號(hào)大號(hào)玻璃小號(hào)玻璃
甲型618
乙型49
其中甲型玻璃每張400元,乙型玻璃每張220元,問:甲、乙兩種型號(hào)的玻璃分別買多少張才最省錢?

查看答案和解析>>

同步練習(xí)冊(cè)答案