【題目】已知函數(shù)f(x)=aln(x+1)﹣x2在區(qū)間(0,1)內任取兩個實數(shù)p,q,且p≠q,不等式 恒成立,則實數(shù)a的取值范圍為(
A.[15,+∞)
B.
C.[1,+∞)
D.[6,+∞)

【答案】A
【解析】解:∵f(x)=aln(x+1)﹣x2,

∴f(x+1)=aln(x+2)﹣(x+1)2,

p,q∈(0,1),且p≠q,不等式 恒成立 恒成立,

即f′(x+1)= ﹣2(x+1)>1恒成立,其中x∈(0,1).

整理得:a>[1+2(x+1)](x+2)恒成立,x∈(0,1).

令h(x)=[1+2(x+1)](x+2),

則a>[h(x)]max,x∈(0,1).

∵h(x)=2x2+7x+6,其對稱軸方程為x=﹣ ,h(x)在區(qū)間(0,1)上單調遞增,

∴當x→1時,h(x)→15,

∴a≥15,即實數(shù)a的取值范圍為[15,+∞),

故選:A.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】當前網(wǎng)購已成為現(xiàn)代大學生的時尚。某大學學生宿舍4人參加網(wǎng)購約定:每個人通過擲一枚質地均勻的骰子決定自己去哪家購物,擲出點數(shù)為5或6的人去淘寶網(wǎng)購物擲出點數(shù)小于5的人去京東商城購物,且參加者必須從淘寶網(wǎng)和京東商城選擇一家購物

1求這4個人中恰有1人去淘寶網(wǎng)購物的概率;

2分別表示這4個人中去淘寶網(wǎng)和京東商城購物的人數(shù),,求隨機變量的分布列與數(shù)學期望

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩人要對C處進行考察,甲在A處,乙在B處,基地在O處,此時∠AOB=90°,測得|AC|=5 km,|BC|=km,|AO|=|BO|=2 km,如圖所示,試問甲、乙兩人應以什么方向走,才能使兩人的行程之和最?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐ABCD中,AB=AC=BD=CD=3,AD=BC=2,點M,N分別為AD,BC的中點,則異面直線AN,CM所成的角的余弦值是(
A.
B.﹣
C.﹣
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)定義域為上單調遞減,則稱為函數(shù)的峰點, 為含峰函數(shù).(特別地,若上單調遞增或遞減,則峰點為1或0).

對于不易直接求出峰點的含峰函數(shù),可通過做試驗的方法給出的近似值,試驗原理為:對任意的為含峰區(qū)間,此時稱為近似峰點;若為含峰區(qū)間,此時稱為近似峰點”.

我們把近似峰點與之間可能出現(xiàn)的最大距離稱為試驗的預計誤差”,記為,其值為其中表示中較大的數(shù)

求此試驗的預計誤差;

如何選取才能使這個試驗方案的預計誤差達到最小?并證明你的結論(只證明的取值即可).

)選取可以確定含峰區(qū)間為在所得的含峰區(qū)間內選取,類似地可以進一步得到一個新的預計誤差.分別求出當時預計誤差的最小值.(本問只寫結果,不必證明)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E是PD的中點.
(1)證明:PB∥平面AEC;
(2)設AP=1,AD= ,三棱錐P﹣ABD的體積V= ,求A到平面PBC的距離.
(3)在(2)的條件下求直線AP與平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)= (a<0)的定義域為D,若所有點(s,f(t)(s,t∈D)構成一個正方形區(qū)域,則a的值為(
A.﹣2
B.﹣4
C.﹣8
D.不能確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,設橢圓C1 =1(a>b>0),長軸的右端點與拋物線C2:y2=8x的焦點F重合,且橢圓C1的離心率是
(1)求橢圓C1的標準方程;
(2)過F作直線l交拋物線C2于A,B兩點,過F且與直線l垂直的直線交橢圓C1于另一點C,求△ABC面積的最小值,以及取到最小值時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】斜棱柱ABC﹣A1B1C1中,側面AA1C1C⊥面ABC,側面AA1C1C為菱形,∠A1AC=60°,E,F(xiàn)分別為A1C1和AB的中點.

(1)求證:平面CEF⊥平面ABC;
(2)若三棱柱的所有棱長為2,求三棱柱F﹣ECB的體積;
(3)D為棱BC上一點,若C1D∥EF,請確定點D位置,并證明你的結論.

查看答案和解析>>

同步練習冊答案