【題目】如圖,在三棱錐中,平面平面,為等邊三角形,
且,,分別為,的中點.
(I)求證:平面;
(II)求證:平面平面;
(III)求三棱錐的體積.
【答案】(I)詳見解析(II)詳見解析(III)
【解析】
試題分析:(Ⅰ)利用三角形的中位線得出OM∥VB,利用線面平行的判定定理證明VB∥平面MOC;(Ⅱ)證明OC⊥平面VAB,即可證明平面MOC⊥平面VAB;(Ⅲ)利用等體積法求三棱錐A-MOC的體積即可
試題解析:(Ⅰ)證明:∵O,M分別為AB,VA的中點,
∴OM∥VB,
∵VB平面MOC,OM平面MOC,
∴VB∥平面MOC;
(Ⅱ)證明:∵AC=BC,O為AB的中點,
∴OC⊥AB,
又∵平面VAB⊥平面ABC,平面ABC∩平面VAB=AB,且OC平面ABC,
∴OC⊥平面VAB,
∵OC平面MOC,
∴平面MOC⊥平面VAB
(Ⅲ)在等腰直角三角形中,,
所以.
所以等邊三角形的面積.
又因為平面,
所以三棱錐的體積等于.
又因為三棱錐的體積與三棱錐的體積相等,
所以三棱錐的體積為.
科目:高中數(shù)學 來源: 題型:
【題目】某學校為了解高三年級學生寒假期間的學習情況,抽取甲、乙兩班,調(diào)查這兩個班的學生在寒假期間每天平均學習的時間(單位:小時),統(tǒng)計結(jié)果繪成頻率分別直方圖(如圖).已知甲、乙兩班學生人數(shù)相同,甲班學生每天平均學習時間在區(qū)間的有8人.
(I)求直方圖中的值及甲班學生每天平均學習時間在區(qū)間的人數(shù);
(II)從甲、乙兩個班每天平均學習時間大于10個小時的學生中任取4人參加測試,設4人中甲班學生的人數(shù)為,求的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖, 以為斜邊的等腰直角三角形與等邊三角形所在平面互相垂直, 且點滿足.
(1)求證:平面平面;
(2)求平面 與平面所成的角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知|a|=4,|b|=8,a與b的夾角是120°.
(1) 計算:① |a+b|,② |4a-2b|;
(2) 當k為何值時,(a+2b)⊥(ka-b)?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】口袋中裝有4個形狀大小完全相同的小球,小球的編號分別為1,2,3,4,甲、乙依次有放回地隨機抽取1個小球,取到小球的編號分別為.在一次抽取中,若有兩人抽取的編號相同,則稱這兩人為“好朋友”,則甲、乙兩人成為“好朋友”的概率為__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某人種植一種經(jīng)濟作物,根據(jù)以往的年產(chǎn)量數(shù)據(jù),得到年產(chǎn)量頻率分布直方圖如圖所示,以各區(qū)間中點值作為該區(qū)間的年產(chǎn)量,得到平均年產(chǎn)量為455,已知當年產(chǎn)量低于350時,單位售價為20元/,若當年產(chǎn)量不低于350而低于550時,單位售價為15元/,當年產(chǎn)量不低于550時,單位售價為10元/.
(1)求圖中的值;
(2)試估計年銷售額大于5000元小于6000元的概率?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】食品添加劑會引起血脂增高、血壓增高、血糖增高等疾病,為了解三高疾病是否與性別有關(guān),醫(yī)院隨機對入院的60人進行了問卷調(diào)查,得到了如下的列聯(lián)表:
(1)請將列聯(lián)表補充完整;若用分層抽樣的方法在患三高疾病的人群中抽9人,其中女性抽幾人?
患三高疾病 | 不患三高疾病 | 合計 | |
男 | 6 | 30 | |
女 | |||
合計 | 36 |
(2)為了研究三高疾病是否與性別有關(guān),請計算出統(tǒng)計量,并說明你有多大把握認為患三高疾病與性別有關(guān).
下列的臨界值表供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com