如圖,在長方體中,的中點.
(Ⅰ)求證:平面;
(Ⅱ)判斷并證明,點在棱上什么位置時,平面平面.
解:(Ⅰ)設,連
、為別為、的中點
  …………………4分
平面,平面 …………………5分
平面  …………………6分
(Ⅱ)點在棱的中點時,平面平面.…………………7分
證明:∵點為棱中點,的中點.
 且  
為平行四邊形 …………………9分
    …………………10分
…………………11分
∴平面平面
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,的中點,,垂足為.求證:.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖, 在三棱柱中,側(cè)棱垂直于底面,=3,=4,=5,=4點D是的中點,
(1)求證: //平面;
(2)求證:⊥平面。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在三棱錐中,側(cè)棱、、兩兩垂直,、 的面積分別為、,則該三棱錐外接球的表面積為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,兩矩形ABCD,ABEF所在平面互相垂直,DE與平面ABCD及平面ABEF所成角分別為,M、N分別為DE與DB的中點,且MN=1.
(1) 求證:MN丄平面ABCD
(2) 求線段AB的長;
(3) 求二面角A—DE—B的平面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知直四棱柱ABCDA1B1C1D1的底面是菱形,且∠DAB=60°,AD=AA1,F為棱BB1的中點,M為線段AC1的中點。
(1)求證:直線MF∥平面ABCD;
(2)求平面AFC1與平面ABCD所成二面角的大小。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,四棱柱的底面是正方形,側(cè)棱平面 ,且,則異面直線所成角的余弦值為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,AA1是長方體的一條棱,這個長方體中與AA1異面的棱的條數(shù)是
A.6B.4C. 5D.8

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若平面α,β的法向量分別為u=(-2, 3,-5),v=(3,-1, 4),則(  )
A.α∥βB.α⊥β
C.α、β相交但不垂直D.以上均不正確

查看答案和解析>>

同步練習冊答案