分析 根據(jù)復合函數(shù)的導數(shù)公式進行求解即可.
解答 解:(1)y′=arcsinx+x•$\frac{1}{\sqrt{1-{x}^{2}}}$;
(2)y′=e${\;}^{{x}^{2}}$+xe${\;}^{{x}^{2}}$•2x=e${\;}^{{x}^{2}}$•(1+2x2);
(3)y′=-$\frac{1}{(1+\sqrt{x})^{2}}$•$\frac{1}{2}•$$\frac{1}{\sqrt{x}}$=$\frac{1}{2\sqrt{x}(1+\sqrt{x})^{2}}$;
(4)y=arctan$\frac{1}{x}$+xln$\sqrt{x}$=y=arctan$\frac{1}{x}$+$\frac{1}{2}$xlnx.
y′=$\frac{1}{1+(\frac{1}{x})^{2}}$•(-$\frac{1}{{x}^{2}}$)+$\frac{1}{2}$lnx+$\frac{1}{2}$x$•\frac{1}{x}$=-$\frac{1}{{x}^{2}+1}$+$\frac{1}{2}$
點評 本題主要考查導數(shù)的計算,根據(jù)常見函數(shù)的導數(shù)公式以及復合函數(shù)的導數(shù)公式是解決本題的關(guān)鍵.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 命題“?x∈R,2x>0”的否定是“?x0∈R,2${\;}^{{x}_{0}}$<0” | |
B. | 命題“若sinx=siny,則x=y”的逆否命題為真命題 | |
C. | 若命題p,¬q都是真命題,則命題“p∧q”為真命題 | |
D. | 命題“若△ABC為銳角三角形,則有sinA>cosB”是真命題 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com