【題目】某種商品每件進(jìn)價(jià)9元,售價(jià)20元,每天可賣(mài)出69件.若售價(jià)降低,銷(xiāo)售量可以增加,且售價(jià)降低元時(shí),每天多賣(mài)出的件數(shù)與成正比.已知商品售價(jià)降低3元時(shí),一天可多賣(mài)出36件.
(Ⅰ)試將該商品一天的銷(xiāo)售利潤(rùn)表示成的函數(shù);(Ⅱ)該商品售價(jià)為多少元時(shí)一天的銷(xiāo)售利潤(rùn)最大?
【答案】(Ⅰ)(Ⅱ)商品售價(jià)為14元
【解析】
試題分析:(Ⅰ)由題意設(shè)出每天多賣(mài)出的件數(shù),結(jié)合售價(jià)降低3元時(shí),一天可多賣(mài)出36件求得k的值,然后寫(xiě)出商品一天的銷(xiāo)售利潤(rùn)函數(shù);(Ⅱ)利用導(dǎo)數(shù)求出函數(shù)的極值點(diǎn),求得極值,比較端點(diǎn)值后得到利潤(rùn)的最大值
試題解析:(1)由題意可設(shè),每天多賣(mài)出的件數(shù)為,∴,∴
又每件商品的利潤(rùn)為元,每天賣(mài)出的商品件數(shù)為
∴該商品一天的銷(xiāo)售利潤(rùn)為
(2)由
令可得或
當(dāng)變化時(shí),、的變化情況如下表:
0 | 6 | 11 | |||||
[來(lái) | — | 0 | + | 0 | — | ||
759 | ↘ | 極小值 | ↗ | 極大值975 | ↘ | 0 |
∴當(dāng)商品售價(jià)為14元時(shí),一天銷(xiāo)售利潤(rùn)最大,最大值為975元
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若關(guān)于x的方程22x+2xa+a+1=0有實(shí)根,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐中,底面為線(xiàn)段上一點(diǎn),為的中點(diǎn).
(1)證明:平面;
(2)求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市統(tǒng)計(jì)局就2015年畢業(yè)大學(xué)生的月收入情況調(diào)查了10000人,并根據(jù)所得數(shù)據(jù)畫(huà)出樣本的頻率分布直方圖所示,每個(gè)分組包括左端點(diǎn),不包括右端點(diǎn),如第一組表示.
(1)求畢業(yè)大學(xué)生月收入在的頻率;
(2)根據(jù)頻率分布直方圖算出樣本數(shù)據(jù)的中位數(shù);
(3)為了分析大學(xué)生的收入與所學(xué)專(zhuān)業(yè)、性別等方面的關(guān)系,必須按月收入再?gòu)倪@10000人中按分層抽樣方法抽出100人作進(jìn)一步分析,則月收入在的這段應(yīng)抽取多少人?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了研究“教學(xué)方式”對(duì)教學(xué)質(zhì)量的影響,某高中數(shù)學(xué)老師分別用兩種不同的教學(xué)方式對(duì)入學(xué)數(shù)學(xué)平均分?jǐn)?shù)和優(yōu)秀率都相同的甲、乙兩個(gè)高一新班進(jìn)行教學(xué)(勤奮程度和自覺(jué)性都一樣).以下莖葉圖為甲、乙兩班(每班均為20人)學(xué)生的數(shù)學(xué)期末考試成績(jī).
(1)學(xué)校規(guī)定:成績(jī)不低于75分的為優(yōu)秀.請(qǐng)畫(huà)出下面的列聯(lián)表.
甲班 | 乙班 | 合計(jì) | |
優(yōu)秀 | |||
不優(yōu)秀 | |||
合計(jì) |
(2)判斷有多大把握認(rèn)為“成績(jī)優(yōu)秀與教學(xué)方式有關(guān)”.
下面臨界值表僅供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓,圓,動(dòng)圓與圓外切并與圓內(nèi)切,圓心的軌跡為曲線(xiàn).
(1)求曲線(xiàn)的方程;
(2)若雙曲線(xiàn)的右焦點(diǎn)即為曲線(xiàn)的右頂點(diǎn),直線(xiàn)為的一條漸近線(xiàn).
①.求雙曲線(xiàn)C的方程;
②.過(guò)點(diǎn)的直線(xiàn),交雙曲線(xiàn)于兩點(diǎn),交軸于點(diǎn)(點(diǎn)與的頂點(diǎn)不重合),當(dāng),且時(shí),求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在R上的函數(shù)f(x)是奇函數(shù),且滿(mǎn)足f(x)=f(x+3),f(-2)=-3.若數(shù)列{an}中,a1=-1,且前n項(xiàng)和Sn滿(mǎn)足=2×+1,則f(a5)+f(a6)=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形的兩條對(duì)角線(xiàn)相交于,現(xiàn)用五種顏色(其中一種為紅色)對(duì)圖中四個(gè)三角形進(jìn)行染色,且每個(gè)三角形用一種顏色圖染.
(1)若必須使用紅色,求四個(gè)三角形中有且只有一組相鄰三角形同色的染色方法的種數(shù);
(2)若不使用紅色,求四個(gè)三角形中所有相鄰三角形都不同色的染色方法的種數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)某電子商務(wù)平臺(tái)的調(diào)查統(tǒng)計(jì)顯示,參與調(diào)查的1 000位上網(wǎng)購(gòu)物者的年齡情況如圖所示.
(1)已知[30,40),[40,50),[50,60)三個(gè)年齡段的上網(wǎng)購(gòu)物者人數(shù)成等差數(shù)列,求a,b的值;
(2)該電子商務(wù)平臺(tái)將年齡在[30,50)內(nèi)的人群定義為高消費(fèi)人群,其他年齡段的人群定義為潛在消費(fèi)人群,為了鼓勵(lì)潛在消費(fèi)人群的消費(fèi),該平臺(tái)決定發(fā)放代金券,高消費(fèi)人群每人發(fā)放50元的代金券,潛在消費(fèi)人群每人發(fā)放100元的代金券,現(xiàn)采用分層抽樣的方式從參與調(diào)查的1 000位上網(wǎng)購(gòu)物者中抽取10人,并在這10人中隨機(jī)抽取3人進(jìn)行回訪(fǎng),求此3人獲得代金券總和X(單位:元)的分布列與數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com