【題目】在三棱錐中,,分別是線段,的中點,底面是正三角形,延長到點,使得.
(1)為線段上確定一點,當平面時,求的值;
(2)當平面,且時,求二面角的余弦值.
科目:高中數學 來源: 題型:
【題目】在如圖所示的多面體中,平面平面,四邊形為邊長為2的菱形, 為直角梯形,四邊形為平行四邊形,且, , .
(1)若, 分別為, 的中點,求證: 平面;
(2)若, 與平面所成角的正弦值為,求二面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為實現國民經濟新“三步走”的發(fā)展戰(zhàn)略目標,國家加大了扶貧攻堅的力度,某地區(qū)在2015年以前的年均脫貧率(脫貧的戶數占當年貧困戶總數的比)為70%,2015年開始全面實施“精準扶貧”政策后,扶貧效果明顯提高,其中2019年度實施的扶貧項目,各項目參加戶數占比(參加戶數占2019年貧困總戶數的比)及該項目的脫貧率見下表:
實施項目 | 種植業(yè) | 養(yǎng)殖業(yè) | 工廠就業(yè) |
參加占戶比 | 45% | 45% | 10% |
脫貧率 | 96% | 96% | 90% |
那么2019年的年脫貧率是實施“精準扶貧”政策前的年均脫貧率的( )倍.
A.B.C.D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C:的離心率為,的面積為2.
(I)求橢圓C的方程;
(II)設M是橢圓C上一點,且不與頂點重合,若直線與直線交于點P,直線與直線交于點Q.求證:△BPQ為等腰三角形.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于定義域為的函數,如果存在區(qū)間滿足是上的單調函數,且在區(qū)間上的值域也為,則稱函數為區(qū)間上的“保值函數”,為“保值區(qū)間”.根據此定義給出下列命題:①函數是上的“保值函數”;②若函數是上的“保值函數”,則;③對于函數存在區(qū)間,且,使函數為上的“保值函數”.其中所有真命題的序號為( )
A.②B.③C.①③D.②③
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=|x﹣1|+|2x+2|,g(x)=|x+2|﹣|x﹣2a|+a.
(1)求不等式f(x)>4的解集;
(2)對x1∈R,x2∈R,使得f(x1)≥g(x2)成立,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:(a>b>0)過點E(,1),其左、右頂點分別為A,B,左、右焦點為F1,F2,其中F1(,0).
(1)求橢圓C的方程:
(2)設M(x0,y0)為橢圓C上異于A,B兩點的任意一點,MN⊥AB于點N,直線l:x0x+2y0y﹣4=0,設過點A與x軸垂直的直線與直線l交于點P,證明:直線BP經過線段MN的中點.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com