【題目】[選修4—4:坐標系與參數(shù)方程]
以平面直角坐標系的原點為極點,x軸的正半軸為極軸,建立極坐標系,兩種坐標系中取相同的長度單位.已知直線l的參數(shù)方程是 (t為參數(shù)),圓C的極坐標方程是ρ=4cos θ,求直線l被圓C截得的弦長.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四面體中,,平面平面,,且.
(1)證明:平面;
(2)設(shè)為棱的中點,當(dāng)四面體的體積取得最大值時,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】斜率為的直線過拋物線的焦點,且與拋物線交于、兩點.
(1)設(shè)點在第一象限,過作拋物線的準線的垂線,為垂足,且,直線與直線關(guān)于直線對稱,求直線的方程;
(2)過且與垂直的直線與圓交于、兩點,若與面積之和為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系xOy中,以原點O為極點,x軸的正半軸為極軸建立極坐標系,已知直線l的參數(shù)方程為:,為參數(shù)點的極坐標為,曲線C的極坐標方程為.
Ⅰ試將曲線C的極坐標方程化為直角坐標方程,并求曲線C的焦點在直角坐標系下的坐標;
Ⅱ設(shè)直線l與曲線C相交于兩點A,B,點M為AB的中點,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(其中為自然對數(shù)的底數(shù)).
(1)若,求函數(shù)在區(qū)間上的最大值;
(2)若,關(guān)于的方程有且僅有一個根, 求實數(shù)的取值范圍;
(3)若對任意,不等式均成立, 求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱錐中,,三角形為等邊三角形,二面角的余弦值為,當(dāng)三棱錐的體積最大值為時,三棱錐的外接球的表面積為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱錐的底面是等腰梯形,,,,,為等邊三角形,且點P在底面上的射影為的中點G,點E在線段上,且.
(1)求證:平面.
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在P地正西方向16km的A處和正東方向2km的B處各一條正北方向的公路AC和BD,現(xiàn)計劃在AC和BD路邊各修建一個物流中心E和F.
(1)若在P處看E,F的視角,在B處看E測得,求AE,BF;
(2)為緩解交通壓力,決定修建兩條互相垂直的公路PE和PF,設(shè),公路PF的毎千米建設(shè)成本為a萬元,公路PE的毎千米建設(shè)成本為8a萬元.為節(jié)省建設(shè)成本,試確定E,F的位置,使公路的總建設(shè)成本最。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com