精英家教網 > 高中數學 > 題目詳情

【題目】已知以點A(﹣1,2)為圓心的圓與直線m:x+2y+7=0相切,過點B(﹣2,0)的動直線l與圓A相交于M、N兩點
(1)求圓A的方程.
(2)當|MN|=2 時,求直線l方程.

【答案】
(1)解:意知A(﹣1,2)到直線x+2y+7=0的距離為圓A半徑r,

,

∴圓A方程為(x+1)2+(y﹣2)2=20


(2)解:垂徑定理可知∠MQA=90°.且 ,

在Rt△AMQ中由勾股定理易知

設動直線l方程為:y=k(x+2)或x=﹣2,顯然x=﹣2合題意.

由A(﹣1,2)到l距離為1知

∴3x﹣4y+6=0或x=﹣2為所求l方程


【解析】(1)利用圓心到直線的距離公式求圓的半徑,從而求解圓的方程;(2)根據相交弦長公式,求出圓心到直線的距離,設出直線方程,再根據點到直線的距離公式確定直線方程.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知圓C:(x﹣a)2+(y﹣2)2=4(a>0)及直線l:x﹣y+3=0.當直線l被圓C截得的弦長為 時,求
(Ⅰ)a的值;
(Ⅱ)求過點(3,5)并與圓C相切的切線方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=2cos2(x﹣ )﹣ sin2x+1
(Ⅰ)求f(x)的單調遞增區(qū)間;
(Ⅱ)當x∈( , )時,若f(x)≥log2t恒成立,求 t的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2017年某市街頭開始興起“mobike”、“ofo”等共享單車,這樣的共享單車為很多市民解決了最后一公里的出行難題.然而,這種模式也遇到了一些讓人尷尬的問題,比如亂停亂放,或將共享單車占為“私有”等.為此,某機構就是否支持發(fā)展共享單車隨機調查了50人,他們年齡的分布及支持發(fā)展共享單車的人數統(tǒng)計如下表:

年齡

受訪人數

5

6

15

9

10

5

支持發(fā)展共享單車人數

4

5

12

9

7

3

(Ⅰ)由以上統(tǒng)計數據填寫下面的列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.1的前提下,認為年齡與是否支持發(fā)展共享單車有關系:

年齡低于35歲

年齡不低于35歲

合計

支持

不支持

合計

(Ⅱ)若對年齡在的被調查人中隨機選取兩人,對年齡在的被調查人中隨機選取一人進行調查,求選中的3人中支持發(fā)展共享單車的人數為2人的概率.

參考數據:

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

參考公式: ,其中

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

在直角坐標系中,以為極點, 軸正半軸為極軸建立極坐標系,圓,直線的極坐標方程分別是, .

(1)求的交點的極坐標;

(2)設的圓心, 的交點連線的中點,已知直線的參數方程為為參數),求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】天然氣是較為安全的燃氣之一,它不含一氧化碳,也比空氣輕,一旦泄露,立即會向上擴散,不易積累形成爆炸性氣體,安全性較高,其優(yōu)點有:①綠色環(huán)保;②經濟實惠;③安全可靠;④改善生活. 某市政府為了節(jié)約居民天然氣,計劃在本市試行居民天然氣定額管理,即確定一個居民年用氣量的標準,為了確定一個較為合理的標準,必須先了解全市居民日常用氣量的分布情況,現(xiàn)采用抽樣調查的方式,獲得了位居民某年的用氣量(單位:立方米),樣本統(tǒng)計結果如下圖表.

(1)分布求出的值;

(2)若從樣本中年均用氣量在(單位:立方米)的5位居民中任選2人作進一步的調查研究,求年均用氣量最多的居民被選中的概率(5位居民的年均用氣量均不相等).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的焦點在軸上,且橢圓的焦距為2.

(Ⅰ)求橢圓的標準方程;

(Ⅱ)過點的直線與橢圓交于兩點,過軸且與橢圓交于另一點 為橢圓的右焦點,求證:三點在同一條直線上.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在數列{an}中,a1=1,an+1=2an+2n
(1)設bn= .證明:數列{bn}是等差數列;
(2)求數列{an}的前n項和Sn

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知等差數列{an}的前n項和為Sn , 公差d≠0,S5=4a3+6,且a1 , a3 , a9成等比數列.
(1)求數列{an}的通項公式;
(2)求數列{ }的前n項和公式.

查看答案和解析>>

同步練習冊答案