【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn , 公差d≠0,S5=4a3+6,且a1 , a3 , a9成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{ }的前n項(xiàng)和公式.
【答案】
(1)解:因?yàn)镾5=4a3+6,所以5a1+10d=4(a1+2d)+6.①
因?yàn)閍1,a3,a9成等比數(shù)列,所以a1(a1+8d)=(a1+2d)2.②
由①②及d≠0可得:a1=2,d=2.
所以an=2n
(2)解:由an=2n,可知Sn=n2+n
所以 = = ,
所以數(shù)列{ }的前n項(xiàng)和為1﹣ + ﹣ +…+ = =
【解析】(1)利用S5=4a3+6a,且a1 , a3 , a9成等比數(shù)列,建立方程,可求數(shù)列的首項(xiàng)與公差,即可得到數(shù)列{an}的通項(xiàng)公式;(2)利用裂項(xiàng)法,即可求數(shù)列{ }的前n項(xiàng)和公式.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解等差數(shù)列的通項(xiàng)公式(及其變式)(通項(xiàng)公式:或),還要掌握等比數(shù)列的通項(xiàng)公式(及其變式)(通項(xiàng)公式:)的相關(guān)知識(shí)才是答題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知以點(diǎn)A(﹣1,2)為圓心的圓與直線m:x+2y+7=0相切,過點(diǎn)B(﹣2,0)的動(dòng)直線l與圓A相交于M、N兩點(diǎn)
(1)求圓A的方程.
(2)當(dāng)|MN|=2 時(shí),求直線l方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將一枚質(zhì)地均勻的骰子先后拋擲兩次,若第一次朝上一面的點(diǎn)數(shù)為a,第二次朝上一面的點(diǎn)數(shù)為b,則函數(shù)y=ax2﹣2bx+1在(﹣∞,2]上為減函數(shù)的概率是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,已知下列條件解三角形:
①A=60°,a= ,b=1;
②A=30°,a=1,b=2;
③A=30°,c=10,a=6;
④A=30°,c=10,a=5,
其中有唯一解的序號(hào)為( )
A.①②③
B.①②④
C.②③④
D.①③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了培養(yǎng)學(xué)生的安全意識(shí),某中學(xué)舉行了一次安全自救的知識(shí)競(jìng)賽活動(dòng),共有800 名學(xué)生參加了這次競(jìng)賽.為了解本次競(jìng)賽的成績(jī)情況,從中抽取了部分學(xué)生的成績(jī)(得分均為整數(shù),滿分為100 分)進(jìn)行統(tǒng)計(jì),得到如下的頻率分布表,請(qǐng)你根據(jù)頻率分布表解答下列問題:
序號(hào) | 分組 | 組中值 | 頻數(shù) | 頻率 |
1 | [60,70) | 65 | ① | 0.10 |
2 | [70,80) | 75 | 20 | ② |
3 | [80,90) | 85 | ③ | 0.20 |
4 | [90,100) | 95 | ④ | ⑤ |
合計(jì) | 50 | 1 |
(1)求出頻率分布表中①、②、③、④、⑤的值;
(2)為鼓勵(lì)更多的學(xué)生了解“安全自救”知識(shí),成績(jī)不低于85分的學(xué)生能獲獎(jiǎng),請(qǐng)估計(jì)在參加的800名學(xué)生中大約有多少名學(xué)生獲獎(jiǎng)?
(3)在上述統(tǒng)計(jì)數(shù)據(jù)的分析中,有一項(xiàng)指標(biāo)計(jì)算的程序框圖如圖所示,則該程序的功能是什么?求輸出的S的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,其中為自然對(duì)數(shù)的底數(shù),求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)既有極大值,又有極小值,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(12分)
在直角坐標(biāo)系xOy中,曲線y=x2+mx–2與x軸交于A,B兩點(diǎn),點(diǎn)C的坐標(biāo)為(0,1).當(dāng)m變化時(shí),解答下列問題:
(1)能否出現(xiàn)AC⊥BC的情況?說明理由;
(2)證明過A,B,C三點(diǎn)的圓在y軸上截得的弦長(zhǎng)為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)是定義在實(shí)數(shù)集R上的函數(shù),且y=f(x+1)是偶函數(shù),當(dāng)x≥1時(shí),f(x)=2x﹣1,則f( ),f( ),f( )的大小關(guān)系是( )
A.f( )<f( )<f( )
B.f( )<f( )<f( )??
C.f( )<f( )<f( )
D.f( )<f( )<f( )
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com