已知數(shù)學公式(n?N*),f(1)=2,則f(2007)=________

-
分析:通過變形,推知,進而得到由周期函數(shù)的定義,可知f(n)是以周期為4的數(shù)列再求解.
解答:根據(jù)題意:,

∴f(n)是以周期為4的數(shù)列

故答案為:
點評:本題主要考查函數(shù)的周期性,在應用中要注意變形.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),函數(shù)y=f(x)的反函數(shù)y=f-1(x)能確定數(shù)列{bn},bn=f-1(n),若對于任意n?N*,都有bn=an,則稱數(shù)列{bn}是數(shù)列{an}的“自反數(shù)列”.
(1)若函數(shù)f(x)=
px+1
x+1
確定數(shù)列{an}的自反數(shù)列為{bn},求an
(2)在(1)條件下,記
n
1
x1
+
1
x2
+…
1
xn
為正數(shù)數(shù)列{xn}的調(diào)和平均數(shù),若dn=
2
an+1
-1
,Sn為數(shù)列{dn}的前n項之和,Hn為數(shù)列{Sn}的調(diào)和平均數(shù),求
lim
n→∞
=
Hn
n
;
(3)已知正數(shù)數(shù)列{cn}的前n項之和Tn=
1
2
(Cn+
n
Cn
)
.求Tn表達式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•德陽二模)已知.f(x)=ax,g(x)=
a2x
a+a2x
,(a>0,a≠1)
(1)求g(x)+g(1-x)的值;
(2)記an=g(
1
n+1
)+g(
2
n+1
)
+…+g(
n
n+1
),(n∈N*).求an;
(3)設bn=
an
3n
,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)是奇函數(shù),f(x)的定義域為(-∞,+∞).當x<0時,f(x)=
ln(-ex)
x
.這里,e為自然對數(shù)的底數(shù).
(1)若函數(shù)f(x)在區(qū)間(a,a+
1
3
)(a>0)
上存在極值點,求實數(shù)a的取值范圍;
(2)如果當x≥1時,不等式f(x)≥
k
x+1
恒成立,求實數(shù)k的取值范圍;
(3)試判斷 ln
1
n+1
2(
1
2
+
2
3
+…+
n
n+1
)-n
的大小關(guān)系,這里n∈N*,并加以證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lnx-x
(1)求f(x)的單調(diào)區(qū)間;
(2)若不等式af(x)≥x-
1
2
x2在x∈(0,+∞)內(nèi)恒成立,求實數(shù)a的取值范圍;
(3)n∈N+,求證:
1
ln2
+
1
ln3
+…+
1
ln(n+1)
n
n+1

查看答案和解析>>

同步練習冊答案