由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),函數(shù)y=f(x)的反函數(shù)y=f-1(x)能確定數(shù)列{bn},bn=f-1(n),若對于任意n?N*,都有bn=an,則稱數(shù)列{bn}是數(shù)列{an}的“自反數(shù)列”.
(1)若函數(shù)f(x)=
px+1
x+1
確定數(shù)列{an}的自反數(shù)列為{bn},求an;
(2)在(1)條件下,記
n
1
x1
+
1
x2
+…
1
xn
為正數(shù)數(shù)列{xn}的調(diào)和平均數(shù),若dn=
2
an+1
-1
,Sn為數(shù)列{dn}的前n項之和,Hn為數(shù)列{Sn}的調(diào)和平均數(shù),求
lim
n→∞
=
Hn
n
;
(3)已知正數(shù)數(shù)列{cn}的前n項之和Tn=
1
2
(Cn+
n
Cn
)
.求Tn表達式.
分析:(1)先求出函數(shù)y=f(x)的反函數(shù)y=f-1(x),根據(jù)bn=f-1(n)可求出p,即可求出an
(2)先求出dn,然后求出sn,根據(jù)Hn為數(shù)列{Sn}的調(diào)和平均數(shù),可求出Hn的關(guān)系式,從而求出
lim
n→∞
=
Hn
n

(3)先根據(jù)正數(shù)數(shù)列{cn}的前n項之和Tn=
1
2
(cn+
n
cn
)
求出c1,當n≥2時,cn=Tn-Tn-1,所以Tn2-Tn-12=n,然后利用疊加法求出Tn表達式即可.
解答:解:(1)由題意的:f-1(x)=
1-x
x-p
=f(x)=
px+1
x+1
,所以p=-1,(2分)
所以an=
-n+1
n+1
(3分)
(2)an=
-n+1
n+1
,dn=
2
an+1
-1=n
,(4分)
sn為數(shù)列{dn}的前n項和,sn=
n(n+1)
2
,(5分)
又Hn為數(shù)列{Sn}的調(diào)和平均數(shù),
所以Hn=
n
1
s1
+
1
s2
+…
1
sn
=
n
2
1×2
+
2
3×2
+…
2
n(n-1)
=
(n+1)
2
(8分)
lim
n→o
 
Hn
n
=
lim
n→o
n+1
2n
=
1
2
(10分)
(3)因為正數(shù)數(shù)列{cn}的前n項之和Tn=
1
2
(cn+
n
cn
)

所以c1=
1
2
(c1+
n
c1
)
解之得:c1=1,T1=1(11分)
當n≥2時,cn=Tn-Tn-1,所以2Tn=Tn-Tn1+
n
Tn-Tn1

Tn-Tn-1=
n
Tn-Tn-1
即Tn2-Tn-12=n(14分)
所以,T2n-1-T2n-2=n-1,T2n-2-T2n-3=n-2,…T22-T12=2累加得:
Tn2-T12=2+3+4+…+n2(16分)
T
2
n
=1+2+3+4+…+n=
n(n+1)
2
,Tn=
(n+1)n
2
(18分)
點評:本題主要考查了反函數(shù)以及數(shù)列與函數(shù)的綜合問題,同時考查了數(shù)列的求和以及累加法,屬于難題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),若函數(shù)y=f(x)的反函數(shù)y=f-1(x)能確定數(shù)列{bn},bn=f-1(n),則稱數(shù)列{bn}是數(shù)列{an}的“反數(shù)列”.
(1)若函數(shù)f(x)=2
x
確定數(shù)列{an}的反數(shù)列為{bn},求{bn}的通項公式;
(2)對(1)中{bn},不等式
1
bn+1
+
1
bn+2
+…+
1
b2n
1
2
loga(1-2a)
對任意的正整數(shù)n恒成立,求實數(shù)a的取值范圍;
(3)設(shè)cn=
1+(-1)λ
2
3n+
1-(-1)λ
2
•(2n-1)(λ為正整數(shù))
,若數(shù)列{cn}的反數(shù)列為{dn},{cn}與{dn}的公共項組成的數(shù)列為{tn},求數(shù)列{tn}前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),函數(shù)y=f(x)的反函數(shù)y=f-1(x)能確定數(shù)列bn,bn=f-1(n)若對于任意n∈N*都有bn=an,則稱數(shù)列{bn}是數(shù)列{an}的“自反函數(shù)列”
(1)設(shè)函數(shù)f(x)=
px+1
x+1
,若由函數(shù)f(x)確定的數(shù)列{an}的自反數(shù)列為{bn},求an;
(2)已知正整數(shù)列{cn}的前項和sn=
1
2
(cn+
n
cn
).寫出Sn表達式,并證明你的結(jié)論;
(3)在(1)和(2)的條件下,d1=2,當n≥2時,設(shè)dn=
-1
anSn2
,Dn是數(shù)列{dn}的前n項和,且Dn>loga(1-2a)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•浦東新區(qū)一模)由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),若函數(shù)y=f(x)的反函數(shù)y=f-1(x)能確定數(shù)列{bn},bn=f-1(n),則稱數(shù)列{bn}是數(shù)列{an}的“反數(shù)列”.
(1)若函數(shù)f(x)=2
x
確定數(shù)列{an}的反數(shù)列為{bn},求bn;
(2)設(shè)cn=3n,數(shù)列{cn}與其反數(shù)列{dn}的公共項組成的數(shù)列為{tn}
(公共項tk=cp=dq,k、p、q為正整數(shù)).求數(shù)列{tn}前10項和S10;
(3)對(1)中{bn},不等式
1
bn+1
+
1
bn+2
+…+
1
b2n
1
2
loga(1-2a)
對任意的正整數(shù)n恒成立,求實數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=f(x)存在反函數(shù)y=f-1(x),由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),由函數(shù)y=f-1(x)確定數(shù)列{bn},bn=f-1(n),則稱數(shù)列{bn}是數(shù)列{an}的“反數(shù)列”.
(1)若數(shù)列{bn}是函數(shù)f(x)=
x+1
2
確定數(shù)列{an}的反數(shù)列,試求數(shù)列{bn}的前n項和Sn;
(2)若函數(shù)f(x)=2
x
確定數(shù)列{cn}的反數(shù)列為{dn},求{dn}的通項公式;
(3)對(2)題中的{dn},不等式
1
dn+1
+
1
dn+2
+…+
1
d2n
1
2
log(1-2a)對任意的正整數(shù)n恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案