某工廠經(jīng)過技術(shù)改造后,降低了能源消耗,經(jīng)統(tǒng)計(jì)該廠某種產(chǎn)品的產(chǎn)量x(單位:噸)與相應(yīng)的生產(chǎn)能耗y(單位:噸)有如下幾組樣本數(shù)據(jù):
x 3 4 5 6
y 2.5 3 4 4.5
根據(jù)相關(guān)性檢驗(yàn),這組樣本數(shù)據(jù)具有線性相關(guān)關(guān)系,通過線性回歸分析,求得回歸直線的斜率為0.7.已知該產(chǎn)品的年產(chǎn)量為10噸,則該工廠每年大約消耗的汽油為多少噸?
考點(diǎn):線性回歸方程
專題:計(jì)算題,概率與統(tǒng)計(jì)
分析:求出橫標(biāo)和縱標(biāo)的平均數(shù),寫出樣本中心點(diǎn),把樣本中心點(diǎn)代入線性回歸方程,得到關(guān)于a的方程,解方程,再令x=10即可得出答案.
解答: 解:∵
.
x
=
1
4
(3+4+5+6)=4.5,
.
y
=
1
4
(2.5+3+4+4.5)=3.5,
∴這組數(shù)據(jù)的樣本中心點(diǎn)是(4.5,3.5),
把樣本中心點(diǎn)代入回歸直線方程
y
=0.7x+a,
∴3.5=4.5×0.7+a,
∴a=0.35,
那么這組數(shù)據(jù)的回歸直線方程是
y
=0.7x+0.35,
當(dāng)x=10時(shí),y=0.7×10+0.35=7.35,即該工廠每年大約消耗的汽油為7.35噸.
點(diǎn)評(píng):本題考查線性回歸方程,解題的關(guān)鍵是線性回歸直線一定過樣本中心點(diǎn),這是求解線性回歸方程的步驟之一.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a=
2
,b=
7
-
3
,c=
6
-
2
,則a,b,c的大小關(guān)系是( 。
A、a>b>c
B、a>c>b
C、b>a>c
D、b>c>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖選項(xiàng)中的長方體中由如圖的平面圖形(其中,若干矩形被涂黑)圍成的是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,角A、B、C所對(duì)的邊分別為a、b、c,且tan
A-B
2
=
a-b
a+b
,判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在四棱錐P-ABCD中,底面ABCD為正方形,PA⊥平面ABCD,點(diǎn)E、F分別是PD、BC的中點(diǎn).
(1)求證:EF∥平面PAB;
(2)求證:AD⊥PB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}為等差數(shù)列,且a2=-4,S7=0
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若等比數(shù)列{bn}滿足b1=-4,b2=a1+a2+a3,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
.
a
=(sin(x+
π
6
),1),
b
=(4,4cosx-
3

(I)若
a
b
,求sin(x+
3
)的值;
(II)設(shè)f(x)=
a
b
,若α∈[0,
π
2
],f(α-
π
6
)=2
3
,求cosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)在定義域[-1,1]上是奇函數(shù),又是減函數(shù).
(1)求證:對(duì)任意x1、x2∈[-1,1],有[f(x1)+f(x2)]•(x1+x2)≤0;
(2)若f(2-a2)>0,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某地為了建立幸福指標(biāo)體系,決定用分層抽樣的方法從公務(wù)員、工人、自由職業(yè)者三個(gè)群體的相關(guān)人員中,抽取若干人組成研究小組,有關(guān)數(shù)據(jù)見如表(單位:人)
相關(guān)人員數(shù) 抽取人數(shù)
公務(wù)員 36 x
工人 54 y
自由職業(yè)者 72 4
(Ⅰ)求研究小組的總?cè)藬?shù);
(Ⅱ)若從研究小組的公務(wù)員和工人中共隨機(jī)選2人,求其中恰好有1人來自工人的概率.

查看答案和解析>>

同步練習(xí)冊答案