選修4-4:坐標系與參數(shù)方程
 在極坐標系下,已知圓O:ρ=cosθ+sinθ和直線l:ρsin(θ-)=,
(I)以極點為坐標原點,極軸為x軸的正半軸建立平面直角坐標系.求圓O和直線l的直角坐標方程;
(II)當θ∈(0,π)時,求直線l與圓O公共點的一個極坐標.
【答案】分析:(Ⅰ)把給出的極坐標方程兩邊同時乘以ρ,把x=ρcosθ,y=ρsinθ代入即可求得圓的普通方程.展開兩角差的正弦公式,把x=ρcosθ,y=ρsinθ代入即可求得直線的普通方程.
(Ⅱ)求出圓與直線的交點坐標(0,1),由該點在極坐標平面內(nèi)的位置得到其極徑與極角.
解答:解:(Ⅰ)圓O:ρ=cosθ+sinθ,即ρ2=ρcosθ+ρsinθ,
所以圓O的直角坐標方程為:x2+y2=x+y,即x2+y2-x-y=0.
直線,即ρsinθ-ρcosθ=,
也就是ρsinθ-ρcosθ=1.
則直線l的直角坐標方程為:y-x=1,即x-y+1=0.
(Ⅱ)由,得
故直線l與圓O公共點為(0,1),該點的一個極坐標為
點評:本題考查了極坐標與直角坐標的互化,考查了直線與圓的位置關系,解答的關鍵是熟記公式x=ρcosθ,y=ρsinθ,是基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

[選修4-4:坐標系與參數(shù)方程]
在直角坐標系xoy中,直線l的參數(shù)方程為
x=
1
2
t
y=
2
2
+
3
2
t
(t為參數(shù)),若以直角坐標系xoy 的O點為極點,Ox為極軸,且長度單位相同,建立極坐標系,得曲線C的極坐標方程為ρ=2cos(θ-
π
4
).直線l與曲線C交于A,B兩點,求|AB|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

A.選修4-1:幾何證明選講
如圖,△ABC的外接圓的切線AE與BC的延長線相交于點E,∠BAC的平分線與BC
交于點D.求證:ED2=EB•EC.
B.選修4-2:矩陣與變換
求矩陣M=
-14
26
的特征值和特征向量.
C.選修4-4:坐標系與參數(shù)方程
在以O為極點的極坐標系中,直線l與曲線C的極坐標方程分別是ρcos(θ+
π
4
)=
3
2
2
和ρsin2θ=4cosθ,直線l與曲線C交于點.A,B,C,求線段AB的長.
D.選修4-5:不等式選講
對于實數(shù)x,y,若|x-1|≤1,|y-2|≤1,求|x-y+1|的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•遼寧)選修4-4:坐標系與參數(shù)方程
在直角坐標系xoy中以O為極點,x軸正半軸為極軸建立坐標系.圓C1,直線C2的極坐標方程分別為ρ=4sinθ,ρcos(θ-
π
4
)=2
2

(Ⅰ)求C1與C2交點的極坐標;
(Ⅱ)設P為C1的圓心,Q為C1與C2交點連線的中點,已知直線PQ的參數(shù)方程為
x=t3+a
y=
b
2
t3+1
(t∈R為參數(shù)),求a,b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

選修4-4:
坐標系與參數(shù)方程在平面直角坐標系x0y中,曲線C1為x=acosφ,y=sinφ(1<a<6,φ為參數(shù)).
在以0為原點,x軸正半軸為極軸的極坐標中,曲線C2的方程為ρ=6cosθ,射線ι為θ=α,ι與C1的交點為A,ι與C2除極點外的一個交點為B.當α=0時,|AB|=4.
(1)求C1,C2的直角坐標方程;
(2)若過點P(1,0)且斜率為
3
的直線m與曲線C1交于D、E兩點,求|PD|與|PE|差的絕對值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•晉中三模)選修4-4:坐標系與參數(shù)方程選講
在直角坐標系xoy中,曲線c1的參數(shù)方程為:
x=2cosθ
y=2sinθ
(θ為參數(shù)),把曲線c1上所有點的縱坐標壓縮為原來的一半得到曲線c2,以O為極點,x正半軸為極軸建立極坐標系,直線l的極坐標方程為
2
ρcos(θ-
π
4
)=4

(1)求曲線c2的普通方程,并指明曲線類型;
(2)過(1,0)點與l垂直的直線l1與曲線c2相交與A、B兩點,求弦AB的長.

查看答案和解析>>

同步練習冊答案