【題目】已知橢圓的右焦點(diǎn)的坐標(biāo)為,離心率

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)點(diǎn)、為橢圓上位于第一象限的兩個(gè)動(dòng)點(diǎn),滿足,的中點(diǎn),線段的垂直平分線分別交軸、軸于、兩點(diǎn).

(。┣笞C:的中點(diǎn);

(ⅱ)若為三角形的面積),求直線的方程.

【答案】(Ⅰ);(Ⅱ)(ⅰ)證明見解析;(ⅱ)

【解析】

(Ⅰ)由已知得,再由的值,求,即可求出橢圓的方程;

(Ⅱ)(。┰O(shè)直線方程為,與橢圓方程聯(lián)立,設(shè),得出的坐標(biāo)關(guān)系,求出點(diǎn)坐標(biāo),得到垂直平分線方程,求出點(diǎn)坐標(biāo),即可證明結(jié)論;

(ⅱ)由結(jié)合(。┑慕Y(jié)論,求出點(diǎn)的坐標(biāo),再由,得到關(guān)系,代入點(diǎn)坐標(biāo),求出的值即可.

(Ⅰ)橢圓的右焦點(diǎn)的坐標(biāo)為,

,又離心率,

橢圓的方程為;

(Ⅱ)(ⅰ)依題意,設(shè)直線方程為

聯(lián)立,消去,得,

,

設(shè),,則,

設(shè)中點(diǎn),則,

,即點(diǎn)坐標(biāo)為),

線段的垂直平分線方程為,

,得,令,得,

中點(diǎn);

(ⅱ)由(ⅰ)得中點(diǎn),

,

,

整理得,即,

整理得,解得(舍去),

,此時(shí),

直線方程為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解甲、乙兩個(gè)快遞公司的工作狀況,假設(shè)同一個(gè)公司快遞員的工作狀況基本相同,現(xiàn)從甲、乙兩公司各隨機(jī)抽取一名快遞員,并從兩人某月(30天)的快遞件數(shù)記錄結(jié)果中隨機(jī)抽取10天的數(shù)據(jù),制表如圖:

每名快遞員完成一件貨物投遞可獲得的勞務(wù)費(fèi)情況如下:甲公司規(guī)定每件4.5元;乙公司規(guī)定每天35件以內(nèi)(含35件)的部分每件4元,超出35件的部分每件7.

1)根據(jù)表中數(shù)據(jù)寫出甲公司員工A在這10天投遞的快遞件數(shù)的平均數(shù)和眾數(shù);

2)為了解乙公司員工B的每天所得勞務(wù)費(fèi)的情況,從這10天中隨機(jī)抽取1天,他所得的勞務(wù)費(fèi)記為X(單位:元),求X的分布列和數(shù)學(xué)期望;

3)根據(jù)表中數(shù)據(jù)估算兩公司的每位員工在該月所得的勞務(wù)費(fèi).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖①,平行四邊形中,,中點(diǎn).將沿折起,使平面平面,得到如圖②所示的四棱錐.

1)求證:平面平面;

2)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,曲線由左半橢圓和圓軸右側(cè)的部分連接而成, 的公共點(diǎn),點(diǎn) (均異于點(diǎn), )分別是 上的動(dòng)點(diǎn).

Ⅰ)若的最大值為,求半橢圓的方程;

Ⅱ)若直線過點(diǎn),且, ,求半橢圓的離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,是以為直角頂點(diǎn)的等腰直角三角形,為線段的中點(diǎn),的中點(diǎn),分別是以、為底邊的等邊三角形,現(xiàn)將分別沿向上折起(如圖),則在翻折的過程中下列結(jié)論可能正確的個(gè)數(shù)為(

1)直線直線;(2)直線直線

3)平面平面;(4)直線直線.

A.個(gè)B.個(gè)C.個(gè)D.個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某保險(xiǎn)公司對(duì)一個(gè)擁有20000人的企業(yè)推出一款意外險(xiǎn)產(chǎn)品,每年每位職工只要交少量保費(fèi),發(fā)生意外后可一次性獲得若干賠償金,保險(xiǎn)公司把企業(yè)的所有崗位共分為三類工種,從事這三類工種的人數(shù)分別為12000,6000,2000,由歷史數(shù)據(jù)統(tǒng)計(jì)出三類工種的賠付頻率如下表(并以此估計(jì)賠付概率):

已知三類工種職工每人每年保費(fèi)分別為25元、25元、40元,出險(xiǎn)后的賠償金額分別為100萬元、100萬元、50萬元,保險(xiǎn)公司在開展此項(xiàng)業(yè)務(wù)過程中的固定支出為每年10萬元.

(1)求保險(xiǎn)公司在該業(yè)務(wù)所或利潤的期望值;

(2)現(xiàn)有如下兩個(gè)方案供企業(yè)選擇:

方案1:企業(yè)不與保險(xiǎn)公司合作,職工不交保險(xiǎn),出意外企業(yè)自行拿出與保險(xiǎn)公司提供的等額賠償金賠償付給意外職工,企業(yè)開展這項(xiàng)工作的固定支出為每年12萬元;

方案2:企業(yè)與保險(xiǎn)公司合作,企業(yè)負(fù)責(zé)職工保費(fèi)的70%,職工個(gè)人負(fù)責(zé)保費(fèi)的30%,出險(xiǎn)后賠償金由保險(xiǎn)公司賠付,企業(yè)無額外專項(xiàng)開支.

請(qǐng)根據(jù)企業(yè)成本差異給出選擇合適方案的建議.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是第七屆國際數(shù)學(xué)教育大會(huì)的會(huì)徽,它的主題圖案由一連串如圖所示的直角三角形演化而成.設(shè)其中的第一個(gè)直角是等腰三角形,且,則,,現(xiàn)將沿翻折成,則當(dāng)四面體體積最大時(shí),它的表面有________個(gè)直角三角形;當(dāng)時(shí),四面體外接球的體積為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(),曲線在點(diǎn)處的切線方程為.

(1)求實(shí)數(shù)的值,并求的單調(diào)區(qū)間;

(2)試比較的大小,并說明理由;

(3)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù),試研究函數(shù)的極值情況;

(2)記函數(shù)在區(qū)間內(nèi)的零點(diǎn)為,記,若在區(qū)間內(nèi)有兩個(gè)不等實(shí)根,證明:.

查看答案和解析>>

同步練習(xí)冊(cè)答案