選修4-1:幾何證明選講
如圖,已知PA與圓O相切于點A,經(jīng)過點O的割線PBC交圓O于B、C兩點,∠APC的平分線分別交AB、AC于點D、E.
(I)證明:AD=AE;
(II)已知∠C=30°,求
PCPA
的值.
分析:(I)由PA與圓O相切于點A,AB是弦,知∠PAB=∠C,由∠APD=∠CPE,知∠PAB+∠APD=∠C+∠CPE,由此能夠證明AD=AE.
(II)由∠PAB=∠C=30°,∠APC=∠BPA,知△APC∽△BPA,故
PC
PA
=
CA
AB
.由BC是圓O的直徑,知∠BAC=90°,由此能求出
PC
PA
的值.
解答:(I)證明:PA與圓O相切于點A,AB是弦,
∴∠PAB=∠C,
又∵∠APD=∠CPE,
∴∠PAB+∠APD=∠C+∠CPE,
∵∠ADE=∠PAB+∠APD,
∠AED=∠C+∠CPE,
∴∠ADE=∠AED,
∴AD=AE.
(II)解:由(I)知∠PAB=∠C=30°,
∵∠APC=∠BPA,
△APC∽△BPA,
PC
PA
=
CA
AB

∵BC是圓O的直徑,∴∠BAC=90°.
在Rt△ABC中,C=30°,
CA
AB
=
1
tanC
=
1
tan30°
=
3

PC
PA
=
CA
AB
=
3
點評:本題考查與圓有關的比例線段的求法,解題時要認真審題,仔細解答,注意弦切角定理的合理運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)選修4-1:幾何證明選講
如圖,圓O的直徑AB=10,弦DE⊥AB于點H,HB=2.
(1)求DE的長;
(2)延長ED到P,過P作圓O的切線,切點為C,若PC=2
5
,求PD的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)A、選修4-1:幾何證明選講 
如圖,PA與⊙O相切于點A,D為PA的中點,
過點D引割線交⊙O于B,C兩點,求證:∠DPB=∠DCP.
B.選修4-2:矩陣與變換
已知矩陣M=
12
2x
的一個特征值為3,求另一個特征值及其對應的一個特征向量.
C.選修4-4:坐標系與參數(shù)方程
在極坐標系中,圓C的方程為ρ=2
2
sin(θ+
π
4
)
,以極點為坐標原點,極軸為x軸的正半軸建立平面直角坐標系,直線l的參數(shù)方程為
x=t
y=1+2t
(t為參數(shù)),判斷直線l和圓C的位置關系.
D.選修4-5:不等式選講
求函數(shù)y=
1-x
+
4+2x
的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

選修4-1:幾何證明選講
自圓O外一點P引圓的一條切線PA,切點為A,M為PA的中點,過點M引圓O的割線交該圓于B、C兩點,且∠BMP=100°,∠BPC=40°,求∠MPB的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•徐州模擬)選修4-1:幾何證明選講
如圖,直線AB經(jīng)過圓上O的點C,并且OA=OB,CA=CB,圓O交于直線OB于E,D,連接EC,CD,若tan∠CED=
12
,圓O的半徑為3,求OA的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•南京二模)選修4-1:幾何證明選講
如圖,圓O是等腰三角形ABC的外接圓,AB=AC,延長BC到點D,使得CD=AC,連結AD交圓O于點E,連結BE與AC交于點F,求證:AE2=EF•BE.

查看答案和解析>>

同步練習冊答案