已知定義域為[0,1]的函數(shù)同時滿足以下三個條件:①對任意,總有;②;③若,則有成立.
(1) 求的值;(2) 函數(shù)在區(qū)間[0,1]上是否同時適合①②③?并予以證明
(3) 假定存在,使得,且,求證:

(1)  (2) 函數(shù)在區(qū)間[0,1]上同時適合①②③.
(3)運用反證法思想來證明不等式的成立性。假設(shè)不成立,則可知來證明。

解析試題分析:(1)解:由①知:;由③知:,即;
 
(2 ) 證明:由題設(shè)知:
,得,有
設(shè),則,

    
∴函數(shù)在區(qū)間[0,1]上同時適合①②③.
(3) 證明:若,則由題設(shè)知:,且由①知,
∴由題設(shè)及③知:
矛盾;
,則則由題設(shè)知:,且由①知,
∴同理得:,矛盾;故由上述知:
考點:函數(shù)恒成立問題
點評:本題考查函數(shù)值的求法和函數(shù)恒成立問題的應用,解題時要認真審題,仔細解答

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知,當時,恒有
的解析式;
的解集為空集,求的范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù) .

(1)畫出 a =" 0" 時函數(shù)的圖象;
(2)求函數(shù) 的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)(a>1).
(1)判斷函數(shù)f (x)的奇偶性;
(2)求f (x)的值域;
(3)證明f (x)在(-∞,+∞)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

有三張正面分別寫有數(shù)字—2,—1,1的卡片,它們的背面完全相同,將這三張卡片背面朝上洗勻后隨機抽取一張,以其正面的數(shù)字作為x的值。放回卡片洗勻,再從三張卡片中隨機抽取一張,以其正面的數(shù)字作為y的值,兩次結(jié)果記為(x,y)。
(1)用樹狀圖或列表法表示(x,y)所有可能出現(xiàn)的結(jié)果;
(2)求使分式有意義的(x,y)出現(xiàn)的概率;
(3)化簡分式;并求使分式的值為整數(shù)的(x,y)出現(xiàn)的概率。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

證明函數(shù)f(x)=x+在(0,1)上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè)函數(shù)f(x)="|x-1|" +|x-a|,.
(I)當a =4時,求不等式的解集;
(II)若恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知定義域為的函數(shù)是奇函數(shù)。
(Ⅰ)求的值;
(Ⅱ)若對任意的,不等式恒成立,求的取值范圍;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分) 若函數(shù)的圖象過兩點,設(shè)函數(shù);
(1)求的定義域;
(2)求函數(shù)的值域,判斷g(x)奇偶性,并說明理由.

查看答案和解析>>

同步練習冊答案