【題目】已知數(shù)列{an}是等差數(shù)列,{bn}是等比數(shù)列,其中a1=b1=1,a2≠b2,且b2為a1、a2的等差中項(xiàng),a2為b2、b3的等差中項(xiàng).
(1)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(2)記,求數(shù)列{cn}的前n項(xiàng)和Sn.
【答案】(1)an=2n-1,bn=2n-1;(2).
【解析】
(1)設(shè)公比及公差分別為q,d,由2b2=a1+a2,2a2=b2+b3,解得q=2,d=2,由此能求出數(shù)列{an}與{bn}的通項(xiàng)公式.
(2)由,利用分組求和法和錯(cuò)位相減法能求出數(shù)列{cn}的前n項(xiàng)和Sn.
(1)設(shè)公比及公差分別為q,d
則2b2=a1+a2,2a2=b2+b3,∴2q=2+d,2+2d=q+q2,
解得:q=1,d=0或q=d=2,
又a2≠b2,∴q=d=2.
∴an=2n-1,bn=2n-1.
(2)∵,,
∴.
,
設(shè)…①
…②
由②-①得
,
∴
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一袋中裝有10個(gè)大小相同的黑球和白球.已知從袋中任意摸出2個(gè)球,至少得到1個(gè)白球的概率是.
(1)求白球的個(gè)數(shù);
(2)從袋中任意摸出3個(gè)球,記得到白球的個(gè)數(shù)為,求隨機(jī)變量的分布列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠生產(chǎn)甲、乙兩種產(chǎn)品.已知生產(chǎn)一噸甲產(chǎn)品、一噸乙產(chǎn)品所需要的煤、電以及產(chǎn)值如表所示;又知道國(guó)家每天分配給該廠的煤和電力有限制,每天供煤至多56噸,供電至多45千瓦.問(wèn)該廠如何安排生產(chǎn),才能使該廠日產(chǎn)值最大?最大的產(chǎn)值是多少?
用煤(噸) | 用電(千瓦) | 產(chǎn)值(萬(wàn)元) | |
生產(chǎn)一噸 甲種產(chǎn)品 | 7 | 2 | 8 |
生產(chǎn)一噸 乙種產(chǎn)品 | 3 | 5 | 11 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列{an}滿足a1=,.(1)證明:數(shù)列為等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;(2)設(shè)cn=(3n+1)an,證明:數(shù)列{cn}中任意三項(xiàng)不可能構(gòu)成等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn . 若對(duì)n∈N* , 總k∈N* , 使得Sn=ak , 則稱數(shù)列{an}是“G數(shù)列”. (Ⅰ)若數(shù)列{an}是等差數(shù)列,其首項(xiàng)a1=1,公差d=﹣1.證明:數(shù)列{an}是“G數(shù)列”;
(Ⅱ)若數(shù)列{an}的前n項(xiàng)和Sn=3n(n∈N*),判斷數(shù)列{an}是否為“G數(shù)列”,并說(shuō)明理由;
(Ⅲ)證明:對(duì)任意的等差數(shù)列{an},總存在兩個(gè)“G數(shù)列”{bn}和{cn},使得an=bn+cn(n∈N*)成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】直線l1過(guò)點(diǎn)A(0,1),l2過(guò)點(diǎn)B(5,0),如果l1∥l2,且l1與l2的距離為5,求l1、l2的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)F為拋物線E:x2=4y的焦點(diǎn),直線l為準(zhǔn)線,C為拋物線上的一點(diǎn)(C在第一象限),以點(diǎn)C為圓心,|CF|為半徑的圓與y軸交于D,F(xiàn)兩點(diǎn),且△CDF為正三角形.
(Ⅰ)求圓C的方程;
(Ⅱ)設(shè)P為l上任意一點(diǎn),過(guò)P作拋物線x2=4y的切線,切點(diǎn)為A,B,判斷直線AB與圓C的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)有如下性質(zhì):如果常數(shù),那么該函數(shù)在上是減函數(shù),在上是增函數(shù).
若,函數(shù)在上的最小值為4,求a的值;
對(duì)于中的函數(shù)在區(qū)間A上的值域是,求區(qū)間長(zhǎng)度最大的注:區(qū)間長(zhǎng)度區(qū)間的右端點(diǎn)區(qū)間的左斷點(diǎn);
若中函數(shù)的定義域是解不等式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的焦點(diǎn)為,其準(zhǔn)線與軸交于點(diǎn),過(guò)作斜率為的直線與拋物線交于兩點(diǎn),弦的中點(diǎn)為的垂直平分線與軸交于.
(1)求的取值范圍;
(2)求證: .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com