(1)已知數(shù)列{cn},其中cn=2n+3n,且數(shù)列{cn+1-pcn}為等比數(shù)列,求常數(shù)p;
(2)設(shè){an}、{bn}是公比不相等的兩個(gè)等比數(shù)列,cn=an+bn,證明數(shù)列{cn}不是等比數(shù)列.
思路與技巧:本例中的兩小題顯然都是根據(jù)定義來(lái)處理,但又都有特點(diǎn).如(1)這樣的題一般都不是轉(zhuǎn)化為=常數(shù),而是等價(jià)于an+12=an·an+2.
解答(1)∵{Cn+1-pcn}為等比數(shù)列.
∴(cn+2-pcn+1)2=(cn+3-pcn+2)(cn+1-pcn)
將cn=2n+3n代入上式整理得
(2-p)(3-p)=0,
∴p=2或p=3.
(2)設(shè){an}{bn}兩個(gè)等比數(shù)列的公比分別為q1,q2且q1≠q2,
若{cn}成等比數(shù)列,則=cncn+2即(an+1+bn+1)2=(an+bn)(an+2+bn+2)
整理得2an+1bn+1=anbn+2+bnan+2即2q1q2=+
∴q1=q2與q1≠q2矛盾,因此{(lán)cn}不是等比數(shù)列.
通過(guò)上述解法可看到若{an}{bn}成等比數(shù)列且公比相同則{an+bn}成等比數(shù)列;若{an}{bn}成等比數(shù)列且公比不同,則{an+bn不構(gòu)成等比數(shù)列.
評(píng)析:(1)中利用了“由一般到特殊”的思想;(2)證明數(shù)列成等比(或等差)數(shù)列可利用等比(或等差)數(shù)列的定義,或用等比(或等差)中項(xiàng)的概念;而證明數(shù)列不成等比(或等差)數(shù)列常?紤]反證法等.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:成功之路·突破重點(diǎn)線·數(shù)學(xué)(學(xué)生用書(shū)) 題型:044
(1)已知數(shù)列{cn},其中cn=2n+3n,且數(shù)列{cn+1-pcn}為等比數(shù)列,求常數(shù)p;
(2)設(shè){an}、{bn}是公比不相等的兩個(gè)等比數(shù)列,cn=an+bn,證明數(shù)列{cn}不是等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:新課程高中數(shù)學(xué)疑難全解 題型:047
(1)已知數(shù)列{cn},其中cn=2n+3n且數(shù)列{cn+1-pcn}為等比數(shù)列,求常數(shù)p;
(2)設(shè){an}、{bn}是公比不相等的兩個(gè)等比數(shù)列,cn=an+bn.求證:數(shù)列{an}不是等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:同步題 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(2)設(shè){an}、{bn}是公比不相等的兩個(gè)等比數(shù)列,cn=an+bn,證明{cn}不是等比數(shù)列.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com