已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率e=
2
2
,左、右焦點分別為F1、F2,點P(2,
3
),點F2在線段PF1的中垂線上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線l:y=kx+m與橢圓C交于M、N兩點,直線F2M與F2N的斜率互為相反數(shù),求證:直線l過定點,并求該定點的坐標(biāo).
考點:直線與圓錐曲線的綜合問題
專題:圓錐曲線中的最值與范圍問題
分析:(Ⅰ)由已知推導(dǎo)出
c
a
=
2
2
,(2c)2=(
3
2+(2-c)2,由此能求出橢圓C的方程.
(Ⅱ)設(shè)直線MN方程為y=kx+m,由
x2
2
+y2=1
y=kx+m
,得(2k2+1)x2+4kmx+2m2-2=0,由此利用韋達定理結(jié)合已知條件能求出直線MN的方程為y=k(x-2),從而能證明直線MN過定點(2,0).
解答: (Ⅰ)解:由橢圓C的離心率e=
2
2

c
a
=
2
2
,其中c=
a2-c2

橢圓C的左、右焦點分別為F1(-c,0),F(xiàn)2(c,0),
又點F2在線段PF1的中垂線上,
∴|F1F2|=|PF2|,∴(2c)2=(
3
2+(2-c)2,
解得a=
2
,b=c=1,
∴橢圓C的方程為
x2
2
+y2=1

(Ⅱ)證明:由題意知直線MN存在斜率,設(shè)其方程為y=kx+m,
x2
2
+y2=1
y=kx+m
,消去y,得(2k2+1)x2+4kmx+2m2-2=0,
設(shè)M(x1,y1),N(x2,y2),則x1+x2=-
4km
2k2+1
x1x2=
2m2-2
2k2+1

kF2M=
kx1+m
x1-1
,kF2N=
kx2+m
x2-1
,(8分)
由已知,得kF2M+kF2N=0,
kx1+m
x1-1
+
kx2+m
x2-1
=0,
化簡,得2kx1x2+(m-k)(x1+x2-2m)=0,(10分)
∴2k•
2m2-2
2k2+1
-
4km(m-k)
2k2+1
-2m=0,
整理得m=-2k,
直線MN的方程為y=k(x-2),
∴直線MN過定點,該定點的坐標(biāo)為(2,0).(12分)
點評:本題考查橢圓方程的求法,考查直線過定點的證明,解題時要認真審題,注意直線方程、橢圓性質(zhì)、韋達定理等知識點的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

從1,3,5,7,9五個數(shù)字中選2個,0,2,4,6,8五個數(shù)字中選3個,能組成多少個無重復(fù)數(shù)字的五位偶數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的定義域是(0,+∞),且當(dāng)x>0時,滿足
f(x)
x
>f′(x).
(Ⅰ)判斷函數(shù)y=
f(x)
x
在(0,+∞)上的單調(diào)性,并說明理由;
(Ⅱ)三個同學(xué)對問題“已知m、n∈N*且n>m≥2,證明(1+m)n>(1+n)m”提出各自的解題思路.
甲說:“用二項式定理將不等式的左右兩邊展開,運用放縮法即可證明”
乙說:“通過轉(zhuǎn)化,構(gòu)造函數(shù),利用函數(shù)的單調(diào)性即可證明”
參考上述解題思路,結(jié)合自己的知識,請你證明此不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過直線l:x+y-6=0上一點P(4,2)作圓O:x2+y2=4的兩條切線,切點為A、B,求:
(1)△ABP的外接圓方程;
(2)若M為l上任意一點,求切線長的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)實部為正數(shù)的復(fù)數(shù)z,滿足|z|=
10
,且復(fù)數(shù)(1+2i)z在復(fù)平面上對應(yīng)的點在第一、三象限的角平分線上.
(1)求復(fù)數(shù)z;
(2)若
.
z
+
m-i
1+i
(m∈R)為純虛數(shù),求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)無窮等比數(shù)列{an}的公比為q,且an>0(n∈N*),[an]表示不超過實數(shù)an的最大整數(shù)(如[2.5]=2),記bn=[an],數(shù)列{an}的前n項和為Sn,數(shù)列{bn}的前n項和為Tn
(Ⅰ)若a1=14,q=
1
2
,求T3;
(Ⅱ)證明:Sn=Tn(n=1,2,3,…)的充分必要條件為an∈N*
(Ⅲ)若對于任意不超過2014的正整數(shù)n,都有Tn=2n+1,證明:(
2
3
 
1
2012
<q<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線C上的點M(x,y)到定點F(1,0)的距離和它到定直線l:x=5的距離的比是常數(shù)
5
5

(Ⅰ)求曲線C的方程;
(Ⅱ)過F且斜率為1的直線與曲線C相交于A、B兩點.求:
    ①線段AB的中點坐標(biāo);     
    ②△OAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知z是復(fù)數(shù),z+2i、(1+i)z均為實數(shù)(i為虛數(shù)單位),且復(fù)數(shù)(z+ai)2在復(fù)平面上對應(yīng)的點在第一象限,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點P(-3,1)且與直線2x+3y-5=0斜率相等的直線方程為
 

查看答案和解析>>

同步練習(xí)冊答案