【題目】已知橢圓的左、右焦點分別為,短軸兩個端點為,且四邊形是邊長為2的正方形.
(1)求橢圓的方程;
(2)若分別是橢圓長軸的左、右端點,動點滿足,連結,交橢圓于點,證明:為定值;
(3)在(2)的條件下,試問軸上是否存在異于點的定點,使得以為直徑的圓恒過直線的交點,若存在,求出點的坐標;若不存在,說明理由.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,某城市有一塊半徑為40 m的半圓形綠化區(qū)域(以O 為圓心,AB為直徑),現(xiàn)計劃對其進行改建.在AB的延長線上取點D,OD=80 m,在半圓上選定一點C,改建后的綠化區(qū)域由扇形區(qū)域AOC和三角形區(qū)域COD組成,其面積為S m2.設∠AOC=x rad.
(1)寫出S關于x的函數(shù)關系式S(x),并指出x的取值范圍;
(2)試問∠AOC多大時,改建后的綠化區(qū)域面積S取得最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】根據(jù)國家環(huán)保部新修訂的《環(huán)境空氣質(zhì)量標準》規(guī)定:居民區(qū)的年平均濃度不得超過微克/立方米,的24小時平均濃度不得超過微克/立方米.某城市環(huán)保部門隨機抽取了一居民區(qū)去年20天的24小時平均濃度的監(jiān)測數(shù)據(jù),數(shù)據(jù)統(tǒng)計如下:
組別 | 濃度 (微克/立方米) | 頻數(shù)(天) | 頻率 |
第一組 | 3 | 0.15 | |
第二組 | 12 | 0.6 | |
第三組 | 3 | 0.15 | |
第四組 | 2 | 0.1 |
(1)從樣本中的24小時平均濃度超過50微克/立方米的5天中,隨機抽取2天,求恰好有一天
的24小時平均濃度超過75微克/立方米的概率;
(2)求樣本平均數(shù),并根據(jù)樣本估計總體的思想,從的年平均濃度考慮,判斷該居民區(qū)的環(huán)境是
否需要改進?說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x2-2(a+1)x+2alnx
(1)若a=2. 求f(x)的極值. (2)若a>0. 求f(x)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)在處的切線方程為.
(1)求的值;
(2)求函數(shù)的極值.
(3)若在是單調(diào)函數(shù),求的取值范圍
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列滿足,其中, .
(1)求, , ,并猜想的表達式(不必寫出證明過程);
(2)設,數(shù)列的前項和為,求證: .
(B)已知數(shù)列的前項和為,且滿足, .
(1)求, , , ,并猜想的表達式(不必寫出證明過程);
(2)設, ,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知A(4,-3),B(2,-1)和直線l:4x+3y-2=0.
(1)求在直角坐標平面內(nèi)滿足|PA|=|PB|的點P的方程;
(2)求在直角坐標平面內(nèi)一點P滿足|PA|=|PB|且點P到直線l的距離為2的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com