(x-
2
x
6的展開式的常數(shù)項是
 
(應用數(shù)字作答).
考點:二項式系數(shù)的性質
專題:計算題,二項式定理
分析:先求出二項式展開式的通項公式,再令x的冪指數(shù)等于0,求得r的值,即可求得展開式中的常數(shù)項的值.
解答: 解:由于(x-
2
x
6展開式的通項公式為 Tr+1=
C
r
6
•(-2)r•x6-2r,
令6-2r=0,求得r=3,可得(x-
2
x
6展開式的常數(shù)項為-8
C
3
6
=-160,
故答案為:-160.
點評:本題主要考查二項式定理的應用,二項式系數(shù)的性質,二項式展開式的通項公式,求展開式中某項的系數(shù),屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=|sinx-a|,a∈R.
(1)試討論函數(shù)f(x)的奇偶性;
(2)求當f(x)取得最大值時,自變量x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足前n項和Sn=n2+1,數(shù)列{bn}滿足bn=
2
an+1
,且前n項和為Tn,設cn=T2n+1-Tn
(1)求數(shù)列{bn}的通項公式;
(2)判斷數(shù)列{cn}的單調性;
(3)當n≥2時,T2n+1-Tn
1
5
-
7
12
log2(a-1)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某班在5個男生和4個女生中選四人參加演講比賽,選中的4人中有男有女,且男生甲和女生乙最少選中1個,則有多少種不同的選法?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知AC,BD是圓O的兩條互相垂直的直徑,直角梯形ABEF所在平面與圓O所在平面互相垂直,其中∠FAB=∠EBA=90°,BE=2,AF=6,AC=4
2
,點N為線段EF中點.
(Ⅰ)求證:直線NO∥平面EBC;
(Ⅱ)若點M在線段AC上,且點M在平面CEF上的射影為線段NC的中點,請求出線段AM的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

甲乙兩名同學參加某項技能比賽,7名裁判給兩人打出的分數(shù)如下莖葉圖所示,依此判斷( 。
A、甲成績穩(wěn)定且平均成績較高
B、乙成績穩(wěn)定且平均成績較高
C、甲成績穩(wěn)定,乙平均成績較高
D、乙成績穩(wěn)定,甲平均成績較高

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a,b∈(0,1),M=a+b-1,N=ab,則M.N的大小關系為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=|2x-a|+|x+1|.
(Ⅰ)當a=1時,解不等式f(x)<3;
(Ⅱ)若f(x)的最小值為1,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設A={(x,y)|
x≥1
y≥1
2x+y≤10
},B={(x-y)|3x-y-11=0},則A∩B的元素個數(shù)為( 。﹤.
A、0B、1C、2D、無數(shù)

查看答案和解析>>

同步練習冊答案