本題(1)、(2)兩個(gè)必答題,每小題7分,滿分14分。
(1)(本小題滿分7分)選修4-2;矩陣與變換
曲線在二階矩陣的作用下變換為曲線
1)求實(shí)數(shù)的值;
2)求M的逆矩陣M-1
,
(1)
代入新曲線
解得
由逆矩陣公式得
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

選修4-2:矩陣與變換(本小題滿分10分)
已知矩陣M
(1) 求矩陣M的逆矩陣;
(2) 求矩陣M的特征值及特征向量;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(1)(本小題滿分7分) 選修4一2:矩陣與變換
若點(diǎn)A(2,2)在矩陣對(duì)應(yīng)變換的作用下得到的點(diǎn)為B(-2,2),求矩陣M的逆矩陣.
(2)(本小題滿分7分) 選修4一4:坐標(biāo)系與參數(shù)方程
已知極坐標(biāo)系的極點(diǎn)O與直角坐標(biāo)系的原點(diǎn)重合,極軸與x軸的正半軸重合,曲線C1與曲線C2(t∈R)交于A、B兩點(diǎn).求證:OA⊥OB.
(3)(本小題滿分7分) 選修4一5:不等式選講
求證:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知=  (   )
A.2008B.—2008 C.2010D.—2010

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知矩陣 ,a為實(shí)數(shù),若點(diǎn)(1,-2)在矩陣A的變換下得到點(diǎn)(-4,0)
(1)求實(shí)數(shù)a的值  (2)求矩陣A的特征值及其對(duì)應(yīng)的特征向量。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知矩陣M1=
21
-2-3
,矩陣M2表示的是將每個(gè)點(diǎn)繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)
π
2
得到的矩陣,M=M2M1
(Ⅰ)求矩陣M;
(Ⅱ)求矩陣M的特征值及其對(duì)應(yīng)的特征向量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題


已知,則    (     )
A  -2008   B  2008    C  2010 D  -2010

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

矩陣的特征值是__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

,則實(shí)數(shù)=                 

查看答案和解析>>

同步練習(xí)冊(cè)答案