已知矩形ABCD,過A作SA⊥平面AC,再過A作AE⊥SB交SB于E,過E作EF⊥SC交SC于F.
(1)求證:AF⊥SC;
(2)若平面AEF交SD于G,求證:AG⊥SD.
考點(diǎn):空間中直線與直線之間的位置關(guān)系,直線與平面垂直的性質(zhì)
專題:空間位置關(guān)系與距離
分析:(1)首先,證明SC⊥平面AEF即可,得到AF⊥SC;
(2)首先,證明CD⊥AD,然后,得到CD⊥平面ADS,再結(jié)合(1),證明AG⊥平面SDC,從而得到AG⊥SD.
解答: 證明:(1)∵SA⊥平面AC,
∴SA⊥BC.
∵AB⊥BC,且SA∩AB=A,
∴BC⊥平面SAB,
∴BC⊥AE,
又∵AE⊥SB,且SB∩BC=B,
∴AE⊥平面SBC,
∴AE⊥SC,且EF⊥SC,AE∩EF=E,
∴SC⊥平面AEF,
∴AF⊥SC.
(2)∵SA⊥平面ABCD,∴SA⊥CD,
又∵四邊形ABCD為矩形,
∴CD⊥AD,
∴CD⊥平面ADS,
∴CD⊥AG,由(1)得SC⊥平面AEF,而AG在平面AEF上,
∴SC⊥AG,
∴AG⊥平面SDC,
∴AG⊥SD.
點(diǎn)評:本題重點(diǎn)考查了空間中直線與直線垂直、直線與平面垂直、平面與平面垂直的判定和性質(zhì)等知識,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

輪船A和輪船B在中午12時離開海港C,兩艘輪船的航行方向之間的夾角為120°,輪船A的航行速度是25海里/小時,輪船B的航行速度是15海里/小時,求下午3時兩船之間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某高校在2012年的自主招生考試成績中隨機(jī)抽取100名學(xué)生的筆試成績,按成績分組,得到的頻率分布表如圖所示.
成績分組頻數(shù)頻率
(160,165]50.05
(165,170]0.35
(170,175]30
(175,180]200.20
(180,185]100.10
合計(jì)1001
(1)請先求出頻率分布表中①、②位置相應(yīng)的數(shù)據(jù),再在答題紙上完成頻率分布直方圖;
(2)為了能選拔出最優(yōu)秀的學(xué)生,該高校決定在筆試成績高的第3、4、5組中用分層抽樣抽取6名學(xué)生進(jìn)入第二輪面試,求第3、4、5組每組各抽取多少名學(xué)生進(jìn)入第二輪面試?
(3)在(2)的前提下,學(xué)校決定在6名學(xué)生中隨機(jī)抽取2名學(xué)生接受A考官的面試,求第四組至少有一名學(xué)生被考官A面試的概率?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,C,D是兩個小區(qū)的所在地,C,D到一條公路AB的垂直距離CA=1km,DB=2km,AB兩端之間的距離為4km.某公交公司將在AB之間找一點(diǎn)N,在N處建造一個公交站臺.
(1)設(shè)AN=x,試寫出用x表示∠CND正切的函數(shù)關(guān)系式,并給出x的范圍;
(2)是否存在x,使得∠CND與∠DNB相等.若存在,請求出x的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)①證明兩角和的余弦定理C(α+β)=cos(α+β)=cosαcosβ-sinαsinβ,②由C(α+β)推導(dǎo)兩角差的正弦公式S(α-β)=sin(α-β)=sinαcosβ-cosαsinβ.
(2)已知α,β都是銳角,cosα=
4
5
,sin(α+β)=
5
13
,求sinβ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)若命題:“?x∈R,使得x2+(1-a)x+1<0”是真命題,求實(shí)數(shù)a的取值范圍.
(2)已知命題p:|1-
x-1
3
|≤2,命題q:(x-1+m)(x-1-m)≤0(m>0),且命題q是命題p的必要不充分條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(
3
sin2x,cos2x),
b
=(cos2x,-cos2x).
(Ⅰ)若當(dāng)x∈(
24
,
12
)時,
a
b
+
1
2
=-
3
5
,求cos4x的值;
(Ⅱ)cosx≥
1
2
,x∈(0,π),若關(guān)于x的方程
a
b
+
1
2
=m有且僅有一個實(shí)根,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有甲、乙兩個班級進(jìn)行數(shù)學(xué)考試,按照大于或等于85分為優(yōu)秀,85分以下為非優(yōu)秀,統(tǒng)計(jì)成績后,得到如下的列聯(lián)表:
優(yōu)秀非優(yōu)秀總計(jì)
甲班10
乙班30
合計(jì)105
已知甲、乙兩個班級共有105人,從其中隨機(jī)抽取1人為優(yōu)秀的概率為
2
7

(Ⅰ)請完成上面的列聯(lián)表;
(Ⅱ)根據(jù)列聯(lián)表的數(shù)據(jù),若按95%的可靠性要求,能否認(rèn)為“成績與班級有關(guān)系”;k=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d;
P(k2≥k00.100.050.0250.010
k02.7063.8415.0246.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在Rt△ABC中,∠A=30°,過直角頂點(diǎn)C作射線CM交線段AB于M,使|AM|>|AC|的概率是
 

查看答案和解析>>

同步練習(xí)冊答案