如圖在平面直角坐標系xOy中,已知圓C1:(x+3)2+(y-1)2=4和圓C2:(x-4)2+(y-5)2=4.
(1)若直線l過點A(4,0),且被圓C1截得的弦長為2,求直線l的方程;
(2)設P為平面上的點,滿足:存在過點P的無窮多對互相垂直的直線l1和l2,它們分別與圓C1和C2相交,且直線l1被圓C1截得的弦長與直線l2被C2截得的弦長相等.試求所有滿足條件的點P的坐標.
解:(1)由于直線x=4與圓C1不相交,所以直線l的斜率存在.設直線l的方程為y=k(x-4),圓C1的圓心到直線l的距離為d,因為圓C1被直線l截得的弦長為2,所以d==1.
由點到直線的距離公式得d=,
從而k(24k+7)=0,即k=0或k=-,
所以直線l的方程為y=0或7x+24y-28=0.
(2)設點P(a,b)滿足條件,不妨設直線l1的方程為y-b=k(x-a),k≠0,則直線l2的方程為y-b=-(x-a).因為圓C1和C2的半徑相等,且圓C1被直線l1截得的弦長與圓C2被直線l2截得的弦長相等,所以圓C1的圓心到直線l1的距離和圓C2的圓心到直線l2的距離相等,即
=,
整理得|1+3k+ak-b|=|5k+4-a-bk|,從而1+3k+ak-b=5k+4-a-bk或1+3k+ak-b=-5k-4+a+bk,即(a+b-2)k=b-a+3或(a-b+8)k=a+b-5,因為k的取值有無窮多個,所以
或
解得或
這樣點P只可能是點P1或點P2.
經(jīng)檢驗點P1和P2滿足題目條件.
科目:高中數(shù)學 來源: 題型:
如圖,在平面直角坐標系xOy中,點A(0,3),直線l:y=2x-4.設圓C的半徑為1,圓心在l上.
(1)若圓心C也在直線y=x-1上,過點A作圓C的切線,求切線的方程.
(2)若圓C上存在點M,使MA=2MO,求圓心C的橫坐標a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2015屆山東濟寧任城一中高二上期中檢測理科數(shù)學試卷(解析版) 題型:解答題
如圖,在平面直角坐標系中,已知橢圓經(jīng)過點,橢圓的離心率.
(1)求橢圓的方程;
(2)過點作兩直線與橢圓分別交于相異兩點、.若的平分線與軸平行, 試探究直線的斜率是否為定值?若是, 請給予證明;若不是, 請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源:2014屆新課標版高三上學期第四次月考理科數(shù)學試卷(解析版) 題型:解答題
如圖,在平面直角坐標系中,點,直線,設圓的半徑為,圓心在上.
(1)若圓心也在直線上,過點作圓的切線,求切線的方程;
(2)若圓上存在點,使,求圓心的橫坐標的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年江蘇省高三年級暑期檢測數(shù)學試卷(解析版) 題型:解答題
(本小題滿分16分)
如圖,在平面直角坐標系中,已知點為橢圓的右頂點, 點,點在橢
圓上, .
(1)求直線的方程;
(2)求直線被過三點的圓截得的弦長;
(3)是否存在分別以為弦的兩個相外切的等圓?若存在,求出這兩個圓的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年江蘇省南京市、鹽城市高三第一次模擬考試數(shù)學(解析版) 題型:解答題
(本小題滿分16分) 如圖,在平面直角坐標系中,已知點為橢圓
的右頂點, 點,點在橢圓上, .
(1)求直線的方程; (2)求直線被過三點的圓截得的弦長;
(3)是否存在分別以為弦的兩個相外切的等圓?若存在,求出這兩個圓的方程;若不
存在,請說明理由
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com