(本小題滿分16分)

如圖,在平面直角坐標系中,已知點為橢圓的右頂點, 點,點在橢

圓上, .

 

(1)求直線的方程;

(2)求直線被過三點的圓截得的弦長;

(3)是否存在分別以為弦的兩個相外切的等圓?若存在,求出這兩個圓的方程;若不存在,請說明理由.

 

【答案】

(1) ;(2) ;

(3)存在這樣的兩個圓,且方程分別為,

【解析】(1)根據(jù),B、P關于y軸對稱,可求得,再求出BD的斜率,寫出點斜式方程,再化成一般式即可.

(2)先求出BP的垂直平分線方程,然后利用點到直線的距離公式求出圓心到此平分線的距離,再利用弦長公式求出弦長即可.

(3)解本小題的關系是先假設存在這樣的兩個圓M與圓N,其中PB是圓M的弦,PA是圓N的弦,從而分析出點M一定在y軸上,點N一定在線段PC的垂直平分線上,當圓和圓是兩個相外切的等圓時,一定有P,M,N在一條直線上,且PM=PN.到此就有了明晰的解題思路.

(1)因為,且A(3,0),所以=2,而B,P關于y軸對稱,所以點P的橫坐標為1,從而得……………………3分         

所以直線BD的方程為…………………………5分

(2)線段BP的垂直平分線方程為x=0,線段AP的垂直平分線方程為,

所以圓C的圓心為(0,-1),且圓C的半徑為………………………8分

又圓心(0,-1)到直線BD的距離為,所以直線被圓截得的弦長

……………………………10分

(3)假設存在這樣的兩個圓M與圓N,其中PB是圓M的弦,PA是圓N的弦,則點M一定在y軸上,點N一定在線段PC的垂直平分線上,當圓和圓是兩個相外切的等圓時,一定有P,M,N在一條直線上,且PM=PN…………………………………12分

,則,根據(jù)在直線上,

解得………………………14分

所以,故存在這樣的兩個圓,且方程分別為

,……………………………16分

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2010江蘇卷)18、(本小題滿分16分)

在平面直角坐標系中,如圖,已知橢圓的左、右頂點為A、B,右焦點為F。設過點T()的直線TA、TB與橢圓分別交于點M、,其中m>0,

(1)設動點P滿足,求點P的軌跡;

(2)設,求點T的坐標;

(3)設,求證:直線MN必過x軸上的一定點(其坐標與m無關)。

查看答案和解析>>

科目:高中數(shù)學 來源:2010年泰州中學高一下學期期末測試數(shù)學 題型:解答題

(本小題滿分16分)
函數(shù),(),
A=
(Ⅰ)求集合A;
(Ⅱ)如果,對任意時,恒成立,求實數(shù)的范圍;
(Ⅲ)如果,當“對任意恒成立”與“內必有解”同時成立時,求 的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆江蘇大豐新豐中學高二上期中考試文數(shù)學試卷(解析版) 題型:解答題

(本小題滿分16分)     本題請注意換算單位

某開發(fā)商用9000萬元在市區(qū)購買一塊土地建一幢寫字樓,規(guī)劃要求寫字樓每層建筑面積為2000平方米。已知該寫字樓第一層的建筑費用為每平方米4000元,從第二層開始,每一層的建筑費用比其下面一層每平方米增加100元。

(1)若該寫字樓共x層,總開發(fā)費用為y萬元,求函數(shù)y=f(x)的表達式;

(總開發(fā)費用=總建筑費用+購地費用)

(2)要使整幢寫字樓每平方米開發(fā)費用最低,該寫字樓應建為多少層?

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆安徽省蚌埠市高二下學期期中聯(lián)考文科數(shù)學試卷(解析版) 題型:解答題

(本小題滿分16分)設命題:方程無實數(shù)根; 命題:函數(shù)

的值域是.如果命題為真命題,為假命題,求實數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010年江蘇省高一第三階段檢測數(shù)學卷 題型:解答題

(本小題滿分16分)

已知函數(shù)f(x)=為偶函數(shù),且函數(shù)yf(x)圖象的兩相鄰對稱軸間的距離為

(Ⅰ)求f)的值;

(Ⅱ)將函數(shù)yf(x)的圖象向右平移個單位后,再將得到的圖象上各點的橫坐標延長到原來的4倍,縱坐標不變,得到函數(shù)yg(x)的圖象,求g(x)的單調遞減區(qū)間.

 

查看答案和解析>>

同步練習冊答案