【題目】已知函數(shù)g(x)= +lnx在[1,+∞)上為增函數(shù),且θ∈(0,π),f(x)=mx﹣ ﹣lnx(m∈R).
(Ⅰ)求θ的值;
(Ⅱ)若f(x)﹣g(x)在[1,+∞)上為單調(diào)函數(shù),求m的取值范圍;
(Ⅲ)設h(x)= ,若在[1,e]上至少存在一個x0 , 使得f(x0)﹣g(x0)>h(x0)成立,求m的取值范圍.

【答案】解:(1)由題意, ≥0在[1,+∞)上恒成立,即 .∵θ∈(0,π),∴sinθ>0.故sinθx﹣1≥0在[1,+∞)上恒成立,只須sinθ1﹣1≥0,
即sinθ≥1,只有sinθ=1.結(jié)合θ∈(0,π),得
2)由(1),得f(x)﹣g(x)=

∵f(x)﹣g(x)在其定義域內(nèi)為單調(diào)函數(shù),
∴mx2﹣2x+m≥0或者mx2﹣2x+m≤0在[1,+∞)恒成立.mx2﹣2x+m≥0等價于m(1+x2)≥2x,即
,( max=1,∴m≥1.mx2﹣2x+m≤0等價于m(1+x2)≤2x,即
在[1,+∞)恒成立,而 ∈(0,1],m≤0.
綜上,m的取值范圍是(﹣∞,0]∪[1,+∞).
3)構(gòu)造F(x)=f(x)﹣g(x)﹣h(x),
當m≤0時,x∈[1,e], , ,
所以在[1,e]上不存在一個x0 , 使得f(x0)﹣g(x0)>h(x0)成立.
當m>0時,
因為x∈[1,e],所以2e﹣2x≥0,mx2+m>0,
所以(F(x))'>0在x∈[1,e]恒成立.
故F(x)在[1,e]上單調(diào)遞增, ,只要
解得
故m的取值范圍是
【解析】(1)由題意可知 .由θ∈(0,π),知sinθ>0.再由sinθ≥1,結(jié)合θ∈(0,π),可以得到θ的值.(2)由題設條件知 .mx2﹣2x+m≥0或者mx2﹣2x+m≤0在[1,+∞)恒成立.由此知 ,由此可知m的取值范圍.(3)構(gòu)造F(x)=f(x)﹣g(x)﹣h(x), .由此入手可以得到m的取值范圍是
【考點精析】掌握函數(shù)單調(diào)性的性質(zhì)和利用導數(shù)研究函數(shù)的單調(diào)性是解答本題的根本,需要知道函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間 ,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集;一般的,函數(shù)的單調(diào)性與其導數(shù)的正負有如下關系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知A、B、C為△ABC的三內(nèi)角,且其對邊分別為a、b、c,若acosC+ccosA=﹣2bcosA.
(1)求角A的值;
(2)若a=2 ,b+c=4,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設集合A={x|﹣1≤x≤2},B={x|x2﹣(2m+1)x+2m<0}.
(1)當m< 時,把集合B用區(qū)間表達;
(2)若A∪B=A,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知c>0,設命題p:函數(shù)y=cx為減函數(shù);命題q:當x[,2]時,函數(shù)f(x)=x+ 恒成立,如果pq為真命題,pq為假命題,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】關于x的不等式x2﹣2ax﹣8a2<0(a>0)的解集為(x1 , x2),且:x2﹣x1=15,則a=(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= 為偶函數(shù).
(1)求實數(shù)a的值;
(2)記集合E={y|y=f(x),x∈{﹣1,1,2}},λ=(lg 2)2+lg 2lg 5+lg 5﹣ ,判斷λ與E的關系;
(3)當x∈[ , ](m>0,n>0)時,若函數(shù)f(x)的值域為[2﹣3m,2﹣3n],求m,n的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】曲線y=1+ 與直線y=k(x﹣2)+4有兩個交點,則實數(shù)k的取值范圍是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知△ABC的三個頂點A(4,﹣6),B(﹣4,0),C(﹣1,4),求:
(1)BC邊的垂直平分線EF的方程;
(2)AB邊的中線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)= ,a為常數(shù),且a∈(0,1).
(1)若x0滿足f(x0)=x0 , 則稱x0為f(x)的一階周期點,證明函數(shù)f(x)有且只有兩個一階周期點;
(2)若x0滿足f(f(x0))=x0 , 且f(x0)≠x0 , 則稱x0為f(x)的二階周期點,當a= 時,求函數(shù)f(x)的二階周期點.

查看答案和解析>>

同步練習冊答案