【題目】已知點,橢圓的離心率為是橢圓E的右焦點,直線AF的斜率為2,O為坐標(biāo)原點.

1)求E的方程;

2)設(shè)過點且斜率為k的直線與橢圓E交于不同的兩M、N,且,求k的值.

【答案】1;(2.

【解析】

1)由題意可知:ac,利用直線的斜率公式求得c的值,即可求得ab的值,求得橢圓E的方程;

2)設(shè)直線l的方程,代入橢圓方程.由韋達(dá)定理及向量數(shù)量積的坐標(biāo)運(yùn)算,即可求得k的值,求得直線l的方程.

解:(1)由離心率e,則ac,

直線AF的斜率k2,則c1,a,

b2a2c21,

∴橢圓E的方程為;

2)設(shè)直線lykx,設(shè)Mx1,y1),Nx2,y2),

,整理得:(1+2k2x2kx+40

△=(﹣k24×1+2k2)>0,即k2

x1+x2,x1x2

,

,

解得:(舍去)

k=±,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于曲線C所在平面上的定點,若存在以點為頂點的角,使得對于曲線C上的任意兩個不同的點AB恒成立,則稱角為曲線C相對于點界角,并稱其中最小的界角為曲線C相對于點確界角.曲線相對于坐標(biāo)原點確界角的大小是 _________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓過點,且橢圓的離心率為

(Ⅰ)求橢圓的方程;

(Ⅱ)斜率為的直線交橢圓,兩點,且.若直線上存在點P,使得是以為頂角的等腰直角三角形,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)區(qū)間;

(2)當(dāng)時,證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4—4:坐標(biāo)系與參數(shù)方程

點P是曲線C1:(x-2)2+y2=4上的動點,以坐標(biāo)原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,以極點O為中心,將點P逆時針旋轉(zhuǎn)90°得到點Q,設(shè)點Q的軌跡為曲線C2

(Ⅰ)求曲線C1,C2的極坐標(biāo)方程;

(Ⅱ)射線(ρ>0)與曲線C1,C2分別交于A,B兩點,設(shè)定點M(2,0),求△MAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】上海市普通高中學(xué)業(yè)水平等級考成績共分為五等十一級,各等級換算成分?jǐn)?shù)如表所示:

等級

A

B

C

D

E

分?jǐn)?shù)

70

67

64

61

58

55

52

49

46

43

40

上海某高中2018屆高三班選考物理學(xué)業(yè)水平等級考的學(xué)生中,有5人取得成績,其他人的成績至少是B級及以上,平均分是64分,這個班級選考物理學(xué)業(yè)水平等級考的人數(shù)至少為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場舉行優(yōu)惠促銷,顧客僅可以從以下兩種優(yōu)惠方案中選擇一種:方案一:每滿200元減50元;方案二:每滿200元可抽獎一次.具體規(guī)則是依次從裝有3個紅球、1個白球的甲箱,2個紅球、2個白球的乙箱,以及裝有1個紅球、3個白球的丙箱中各隨機(jī)摸出1個球,所得結(jié)果和享受的優(yōu)惠如下表:(:所有小球僅顏色有區(qū)別)

(1)若兩個顧客都選擇方案二,各抽獎一次,求至少一個人獲得優(yōu)惠的概率;

(2)若某顧客選擇方案二,請分別計算該顧客獲得半價優(yōu)惠的概率、7折優(yōu)惠的概率以及8折優(yōu)惠的概率;

(3)若小明的購物金額為320,你覺得小明應(yīng)該選取哪個方案,為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線 的兩條漸近線與拋物線的準(zhǔn)線分別交于,兩點.若雙曲線的離心率為的面積為,為坐標(biāo)原點,則拋物線的焦點坐標(biāo)為 ( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)2018年的高考考生人數(shù)是2015年高考考生人數(shù)的倍,為了更好地對比該校考生的升學(xué)情況,統(tǒng)計了該校2015年和2018年的高考情況,得到如圖柱狀圖:

則下列結(jié)論正確的是  

A. 與2015年相比,2018年一本達(dá)線人數(shù)減少

B. 與2015年相比,2018年二本達(dá)線人數(shù)增加了

C. 2015年與2018年藝體達(dá)線人數(shù)相同

D. 與2015年相比,2018年不上線的人數(shù)有所增加

查看答案和解析>>

同步練習(xí)冊答案