【題目】對于函數(shù)和,若存在常數(shù),對于任意,不等式都成立,則稱直線是函數(shù)的分界線. 已知函數(shù)為自然對數(shù)的底, 為常數(shù)
(1)討論函數(shù)的單調(diào)性;
(2)設(shè),試探究函數(shù)與函數(shù)是否存在“分界線”?若存在,求出分界線方程;若不存在,試說明理由.
【答案】(1)見解析(2)
【解析】【試題分析】(1)先對函數(shù)的解析式進行求導,再運用分類整合思想分類探求;(2)依據(jù)題設(shè)條件先假設(shè)分界線的存在,然后再建立不等式運用導數(shù)與函數(shù)的單調(diào)性的關(guān)系進行分析求解:
(1)
當時, ,所以在上單調(diào)遞增.
當時,
當時, 在上,所以單調(diào)遞減; 在上,所以單調(diào)遞增.
當時, 在上,所以單調(diào)遞增;
(2)假設(shè)存在直線,使不等式
當時,由于,所以
所以, 恒成立,所以恒成立.
令,解得,所以只需不等式恒成立
設(shè),則
在上單調(diào)遞增,且
當時, ,所以單調(diào)遞減;當時, ,所以單調(diào)遞增.
,所以不等式恒成立
綜上所述,函數(shù)與函數(shù)存在分界線,其分界線方程為
科目:高中數(shù)學 來源: 題型:
【題目】對于函數(shù)y=f(x),如果存在區(qū)間[m,n],同時滿足下列條件:
1)f(x)在[m,n]上是單調(diào)的;
2)當定義域是[m,n]時,f(x)的值域也是[m,n],則稱[m,n]是該函數(shù)的“和諧區(qū)間”.若函數(shù)f(x)= ﹣ (a>0)存在“和諧區(qū)間”,則實數(shù)a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,拋物線C1:x2=4y,C2:x2=-2py(p>0).點M(x0,y0)在拋物線C2上,過M作C1的切線,切點為A,B(M為原點O時,A,B重合于O).當x0=1-時,切線MA的斜率為-.
(1)求p的值;
(2)當M在C2上運動時,求線段AB中點N的軌跡方程(A,B重合于O時,中點為O).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知△ABC的三個內(nèi)角A,B,C,滿足sinC= .
(1)判斷△ABC的形狀;
(2)設(shè)三邊a,b,c成等差數(shù)列且S△ABC=6cm2 , 求△ABC三邊的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系內(nèi),已知A(3,3)是⊙C上一點,折疊該圓兩次使點A分別與圓上不相同的兩點(異于點A)重合,兩次的折痕方程分別為x﹣y+1=0和x+y﹣7=0,若⊙C上存在點P,使∠MPN=90°,其中M,N的坐標分別為(﹣m,0)(m,0),則m的最大值為( )
A.4
B.5
C.6
D.7
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從某校高三學生中隨機抽取了名學生,統(tǒng)計了期末數(shù)學考試成績?nèi)缦卤恚?/span>
(1)請在頻率分布表中的①、②位置上填上相應(yīng)的數(shù)據(jù),并在給定的坐標系中作出這些數(shù)據(jù)的頻率分布直方圖,再根據(jù)頻率分布直方圖估計這名學生的平均成績;
(2)用分層抽樣的方法在分數(shù)在內(nèi)的學生中抽取一個容量為的樣本,將該樣本看成一個總體,從中任取人,求至少有人的分數(shù)在內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線經(jīng)過點M( ).
(1)如果此雙曲線的漸近線為 ,求雙曲線的標準方程;
(2)如果此雙曲線的離心率e=2,求雙曲線的標準方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com