科目: 來源: 題型:
【題目】甲口袋中裝有兩個相同的小球,它們分別寫有1和2;乙口袋中裝有三個相同的小球,它們分別寫有3、4和5;丙口袋中裝有兩個相同的小球,它們分別寫有6和7.從這3個口袋中各隨機(jī)地取出1個小球.
(1)取出的3個小球上恰好有兩個偶數(shù)的概率是多少?
(2)取出的3個小球上全是奇數(shù)的概率是多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在每個小正方形的邊長均為1的方格紙中,線段AB的端點(diǎn)A、B均在小正方形的頂點(diǎn)上.
(1)在方格紙中畫出以AB為一條直角邊的等腰直角△ABC,頂點(diǎn)C在小正方形的頂點(diǎn)上;
(2)在方格紙中畫出△ABC的中線BD,將線段DC繞點(diǎn)C順時針旋轉(zhuǎn)90°得到線段CD′,畫出旋轉(zhuǎn)后的線段CD′,連接BD′,直接寫出四邊形BDCD′的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,某賓館大廳要鋪圓環(huán)形的地毯,工人師傅只測量了與小圓相切的大圓的弦AB的長,就計算出了圓環(huán)的面積,若測量得AB的長為20米,則圓環(huán)的面積為( )
A. 10平方米B. 10π平方米C. 100平方米D. 100π平方米
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,拋物線y=a(x+2)(x﹣6)(a>0)與x軸交于C,D兩點(diǎn)(點(diǎn)C在點(diǎn)D的左邊),與y軸負(fù)半軸交于點(diǎn)A.
如圖1,拋物線y=a(x+2)(x﹣6)(a>0)與x軸交于C,D兩點(diǎn)(點(diǎn)C在點(diǎn)D的左邊),與y軸負(fù)半軸交于點(diǎn)A.
(1)若△ACD的面積為16.
①求拋物線解析式;
②S為線段OD上一點(diǎn),過S作x軸的垂線,交拋物線于點(diǎn)P,將線段SC,SP繞點(diǎn)S順時針旋轉(zhuǎn)任意相同的角到SC1,SP1的位置,使點(diǎn)C,P的對應(yīng)點(diǎn)C1,P1都在x軸上方,C1C與P1S交于點(diǎn)M,P1P與x軸交于點(diǎn)N.求的最大值;
(2)如圖2,直線y=x﹣12a與x軸交于點(diǎn)B,點(diǎn)M在拋物線上,且滿足∠MAB=75°的點(diǎn)M有且只有兩個,求a的取值范圍.
(1)若△ACD的面積為16.
①求拋物線解析式;
②S為線段OD上一點(diǎn),過S作x軸的垂線,交拋物線于點(diǎn)P,將線段SC,SP繞點(diǎn)S順時針旋轉(zhuǎn)任意相同的角到SC1,SP1的位置,使點(diǎn)C,P的對應(yīng)點(diǎn)C1,P1都在x軸上方,C1C與P1S交于點(diǎn)M,P1P與x軸交于點(diǎn)N.求的最大值;
(2)如圖2,直線y=x﹣12a與x軸交于點(diǎn)B,點(diǎn)M在拋物線上,且滿足∠MAB=75°的點(diǎn)M有且只有兩個,求a的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,在四邊形ABCD內(nèi)接于⊙O,AB=AC,BD為⊙O的直徑,AE⊥BD,垂足為點(diǎn)E,交BC于點(diǎn)F.
(1)求證:FA=FB;
(2)如圖2,分別延長AD,BC交于點(diǎn)G,點(diǎn)H為FG的中點(diǎn),連接DH,若tan∠ACB=,求證:DH為⊙O的切線;
(3)在(2)的條件下,若DA=3,求AE的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知某項(xiàng)工程由甲、乙兩隊合做12天可以完成,共需工程費(fèi)用27720元.乙隊單獨(dú)完成這項(xiàng)工程所需時間是甲隊單獨(dú)完成這項(xiàng)工程所需時間的1.5倍,且甲隊每天的工程費(fèi)用比乙隊多250元.
(1)求甲、乙兩隊單獨(dú)完成這項(xiàng)工程各需多少天?
(2)若工程管理部門決定從這兩個隊中選一個隊單獨(dú)完成此項(xiàng)工程,從節(jié)約資金的角度考慮,應(yīng)選擇哪個工程隊?請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB∥DC,AB=AD,對角線AC,BD交于點(diǎn)O,AC平分∠BAD,過點(diǎn)C作CE⊥AB交AB的延長線于點(diǎn)E,連接OE.
(1)求證:四邊形ABCD是菱形;
(2)若AB=,BD=2,求OE的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】為了增強(qiáng)學(xué)生的環(huán)保意識,某校組織了一次全校2000名學(xué)生都參加的“環(huán)保知識”考試,考題共10題.考試結(jié)束后,學(xué)校團(tuán)委隨機(jī)抽查部分考生的考卷,對考生答題情況進(jìn)行分析統(tǒng)計,發(fā)現(xiàn)所抽查的考卷中答對題量最少為6題,并且繪制了如下兩幅不完整的統(tǒng)計圖.請根據(jù)統(tǒng)計圖提供的信息解答以下問題:
(1)本次抽查的樣本容量是 ;在扇形統(tǒng)計圖中,m= ,n= ,“答對8題”所對應(yīng)扇形的圓心角為 度;
(2)將條形統(tǒng)計圖補(bǔ)充完整;
(3)請根據(jù)以上調(diào)查結(jié)果,估算出該校答對不少于8題的學(xué)生人數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=2,AD=,在邊CD上有一點(diǎn)E,使EB平分∠AEC.若P為BC邊上一點(diǎn),且BP=2CP,連接EP并延長交AB的延長線于F.給出以下五個結(jié)論:
①點(diǎn)B平分線段AF;②PF=DE;③∠BEF=∠FEC;④S矩形ABCD=4S△BPF;⑤△AEB是正三角形.
其中正確結(jié)論的序號是.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com