【題目】已知某項(xiàng)工程由甲、乙兩隊(duì)合做12天可以完成,共需工程費(fèi)用27720元.乙隊(duì)單獨(dú)完成這項(xiàng)工程所需時(shí)間是甲隊(duì)單獨(dú)完成這項(xiàng)工程所需時(shí)間的1.5倍,且甲隊(duì)每天的工程費(fèi)用比乙隊(duì)多250元.

1)求甲、乙兩隊(duì)單獨(dú)完成這項(xiàng)工程各需多少天?

2)若工程管理部門決定從這兩個(gè)隊(duì)中選一個(gè)隊(duì)單獨(dú)完成此項(xiàng)工程,從節(jié)約資金的角度考慮,應(yīng)選擇哪個(gè)工程隊(duì)?請(qǐng)說(shuō)明理由.

【答案】1)甲單獨(dú)完成這項(xiàng)工程需要20天,乙單獨(dú)完成這項(xiàng)工程需要30

2)甲工程隊(duì)單獨(dú)完成較劃算,理由見(jiàn)解析.

【解析】

1)設(shè)甲需要x天,則乙需要1.5x天,根據(jù)甲乙兩隊(duì)合作12天可以完成整個(gè)工作任務(wù)列出方程即可求解;(2)設(shè)甲每天的費(fèi)用是y元, 每天的費(fèi)用是(y-250)元,根據(jù)總工程費(fèi)用列出方程即可求出y的值,再分別計(jì)算即可.

1)設(shè)甲需要x天,則乙需要1.5x天,

根據(jù)題意得

解得x=20,

經(jīng)檢驗(yàn)x=20是原方程的解,

1.5x=30天,

∴甲單獨(dú)完成這項(xiàng)工程需要20天,乙單獨(dú)完成這項(xiàng)工程需要30.

2)設(shè)甲每天的費(fèi)用是y元, 每天的費(fèi)用是(y-250)元,

依題意得12y+12(y-250)=27720

解得y=1280(元),

1280-250=1030(元)

甲單獨(dú)完成這項(xiàng)工程的費(fèi)用:1280×20=25600元,

乙單獨(dú)完成這項(xiàng)工程的費(fèi)用:1030×30=30900元,

故選甲工程隊(duì)單獨(dú)完成較劃算.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某縣為了了解2013年初中畢業(yè)生畢業(yè)后的去向,對(duì)部分初三學(xué)生進(jìn)行了抽樣調(diào)查,就初三學(xué)生的四種去向

A.讀普通高中;

B.讀職業(yè)高中

C.直接進(jìn)入社會(huì)就業(yè);

D.其它)進(jìn)行數(shù)據(jù)統(tǒng)計(jì),并繪制了兩幅不完整的統(tǒng)計(jì)圖(a)、(b).請(qǐng)問(wèn):

1)該縣共調(diào)查了   名初中畢業(yè)生;

2)將兩幅統(tǒng)計(jì)圖中不完整的部分補(bǔ)充完整;

3)若該縣2013年初三畢業(yè)生共有4500人,請(qǐng)估計(jì)該縣今年的初三畢業(yè)生中讀普通高中的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某小區(qū)為了綠化環(huán)境,計(jì)劃分兩次購(gòu)進(jìn)A、B兩種花草,第一次分別購(gòu)進(jìn)A、B兩種花草30棵和15棵,共花費(fèi)675元;第二次分別購(gòu)進(jìn)A、B兩種花草12棵和5棵.兩次共花費(fèi)940元(兩次購(gòu)進(jìn)的A、B兩種花草價(jià)格均分別相同).
(1)A,B兩種花草每棵的價(jià)格分別是多少元?
(2)若購(gòu)買A,B兩種花草共31棵,且B種花草的數(shù)量少于A種花草的數(shù)量的2倍,請(qǐng)你給出一種費(fèi)用最省的方案,并求出該方案所需費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是矩形紙片,AB=2.對(duì)折矩形紙片ABCD,使AD與BC重合,折痕為EF;展平后再過(guò)點(diǎn)B折疊矩形紙片,使點(diǎn)A落在EF上的點(diǎn)N,折痕BM與EF相交于點(diǎn)Q;再次展平,連接BN,MN,延長(zhǎng)MN交BC于點(diǎn)G.有如下結(jié)論:
①∠ABN=60°;②AM=1;③QN= ;④△BMG是等邊三角形;⑤P為線段BM上一動(dòng)點(diǎn),H是BN的中點(diǎn),則PN+PH的最小值是
其中正確結(jié)論的序號(hào)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】A,B,C三人玩籃球傳球游戲,游戲規(guī)則是:第一次傳球由A將球隨機(jī)地傳給B,C兩人中的某一人,以后的每一次傳球都是由上次的傳球者隨機(jī)地傳給其他兩人中的某一人.
(1)求兩次傳球后,球恰在B手中的概率;
(2)求三次傳球后,球恰在A手中的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為創(chuàng)建美麗鄉(xiāng)村,某村計(jì)劃購(gòu)買甲、乙兩種樹(shù)苗共400棵,對(duì)本村道路進(jìn)行綠化改造,已知甲種樹(shù)苗每棵200元,乙種樹(shù)苗每棵300元.

若購(gòu)買兩種樹(shù)苗的總金額為90000元,求需購(gòu)買甲、乙兩種樹(shù)苗各多少棵?

若購(gòu)買甲種樹(shù)苗的金額不少于購(gòu)買乙種樹(shù)苗的金額,則至少應(yīng)購(gòu)買甲種樹(shù)苗多少棵?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,其對(duì)稱軸為直線x=﹣1,給出下列結(jié)果:(1)b2>4ac;(2)abc>0;(3)2a+b=0;(4)a+b+c>0;(5)a﹣b+c<0.
則正確的結(jié)論是( )

A.(1)(2)(3)(4)
B.(2)(4)(5)
C.(2)(3)(4)
D.(1)(4)(5)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,ABBC,按以下步驟作圖:以A為圓心,小于AD的長(zhǎng)為半徑畫(huà)弧,分別交AB、CDE、F;再分別以E、F為圓心,大于EF的長(zhǎng)半徑畫(huà)弧,兩弧交于點(diǎn)G;作射線AGCD于點(diǎn)H.則下列結(jié)論:①AG平分∠DAB,CH=DH,③△ADH是等腰三角形,④SADH=S四邊形ABCH

其中正確的有( 。

A. ①②③ B. ①③④ C. ②④ D. ①③

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某莊有甲、乙兩家草莓采摘園的草莓銷售價(jià)格相同,春節(jié)期間,兩家采摘園將推出優(yōu)惠方案,甲園的優(yōu)惠方案是:游客進(jìn)園需購(gòu)買門票,采摘的草莓六折優(yōu)惠;乙園的優(yōu)惠方案是:游客進(jìn)園不需購(gòu)買門票,采摘的草莓超過(guò)一定數(shù)量后,超過(guò)部分打折優(yōu)惠.優(yōu)惠期間,某游客的草莓采摘量為(千克),在甲園所需總費(fèi)用為(元),在乙園所需總費(fèi)用為(元),、之間的函數(shù)關(guān)系如圖所示.

1)甲采摘園的門票是_____,兩個(gè)采摘園優(yōu)惠前的草莓單價(jià)是每千克____;

2)當(dāng)時(shí),求的函數(shù)表達(dá)式;

3)游客在“春節(jié)期間”采摘多少千克草莓時(shí),甲、乙兩家采摘園的總費(fèi)用相同.

查看答案和解析>>

同步練習(xí)冊(cè)答案