科目: 來源: 題型:
【題目】如圖所示,在矩形ABCD中,AB=1,在線段BC上取一點(diǎn)E,連接AE、ED,將△ABE沿AE翻折,使點(diǎn)B落在B'處,線段EB'交AD于點(diǎn)F.將△ECD沿DE翻折,使點(diǎn)C的對應(yīng)點(diǎn)C'落在線段EB'上,且點(diǎn)C'恰好為EB'的中點(diǎn),則線段EF的長為_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】若整數(shù)a使關(guān)于x的分式方程的解為整數(shù),且使關(guān)于y的不等式組有解,且最多有4個(gè)整數(shù)解,則符合條件的所有整數(shù)a的和為( 。
A.﹣3B.﹣8C.﹣13D.﹣17
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,小明所住高樓AB高為100米,樓旁有一座坡比為3:1的山坡CE,小明想知道山坡的高度,于是小明來到樓頂B俯視坡底C,測得俯角為45°,仰視坡項(xiàng)E,測得仰角為27°,請根據(jù)小明提供的信息,幫小明求出斜坡CE的高度ED的值.(結(jié)果均精確到0.1米.參考數(shù)據(jù):sin27°≈0.45,cos37°≈0.89,tan27°≈0.51)( )
A.151.1米B.168.7米C.171.6米D.181.9米
查看答案和解析>>
科目: 來源: 題型:
【題目】提出問題:(1)如圖①,正方形ABCD中,點(diǎn)E,點(diǎn)F分別在邊AD和邊CD上,若正方形邊長為4,DE+DF=4,則四邊形BEDF的面積為 .
探究問題:(2)如圖②,四邊形ABCD,AB=BC=4,∠ABC=60°,∠ADC=120°,點(diǎn)E、F分別是邊AD和邊DC上的點(diǎn),連接BE,BF,若ED+DF=3,BD=2,求四邊形EBFD的面積;
解決問題:(3)某地質(zhì)勘探隊(duì)為了進(jìn)行資源助測,建立了如圖③所示的一個(gè)四邊形野外勘查基地,基地相鄰兩側(cè)邊界DA、AB長度均為4km,∠DAB=90°,由于勘測需要及技術(shù)原因,主勘測儀C與基地邊緣D、B夾角為90°(∠DCB=90°),在邊界CD和邊界BC上分別有兩個(gè)輔助勘測儀E和F,輔助勘測儀E和F與主勘測儀C的距離之和始終等于4km(CE+CF=4).為了達(dá)到更好監(jiān)測效果,需保證勘測區(qū)域(四邊形EAFC)面積盡可能大.請問勘測區(qū)域面積有沒有最大值,如果有求出最大值,如果沒有,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,拋物線C1的圖象與x軸交A(﹣3,0),B(1,0)兩點(diǎn),與y軸交于點(diǎn)C(0,3)點(diǎn)D為拋物線的頂點(diǎn).
(1)求拋物線C1的解析式;
(2)將拋物線C1關(guān)于直線x=1對稱后的拋物線記為C2,將拋物線C1關(guān)于點(diǎn)B對稱后的拋物線記為C3,點(diǎn)E為拋物線C3的頂點(diǎn),在拋物線C2的對稱軸上是否存在點(diǎn)F,使得△BEF為等腰三角形?若存在請求出點(diǎn)F的坐標(biāo),若不存在請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,以△ABC的邊AC為直徑的O恰為△ABC的外接圓,∠ABC的平分線交O于點(diǎn)D,過點(diǎn)D作DE∥AC交BC的延長線于點(diǎn)E
(1)求證:DE是⊙O的切線;
(2)若AB=4,BC=2,求DE的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】隨著信息技術(shù)的迅猛發(fā)展,人們?nèi)ド虉鲑徫锏闹Ц斗绞礁佣鄻、便捷,在一次購物中,張華和李紅都想從“微信”、“支付寶”、“銀行卡”、“現(xiàn)金”四種支付方式中選一種方式進(jìn)行支付.
(1)張華用“微信”支付的概率是______.
(2)請用畫樹狀圖或列表法求出兩人恰好選擇同一種支付方式的概率.(其中“微信”、“支付寶”、“銀行卡”、“現(xiàn)金”分別用字母“A”“B”“C”“D”代替)
查看答案和解析>>
科目: 來源: 題型:
【題目】、兩地相距30千米,已知甲、乙兩人分別騎自行車和摩托車從地出發(fā)前往地,途中乙因修車耽誤了些時(shí)間,然后又繼續(xù)趕路.圖5中的線段和折線分別反映了甲、乙兩人所行的路程(千米)與時(shí)間(分)的函數(shù)關(guān)系,根據(jù)圖像提供的信息回答下列問題:
(1)甲騎自行車的速度是_________千米/分鐘;
(2)兩人第二次相遇時(shí)距離地________千米;
(3)線段反映了乙修好車后所行的路程(千米)與時(shí)間(分)的函數(shù)關(guān)系.請求出線段的表達(dá)式及其定義域.
查看答案和解析>>
科目: 來源: 題型:
【題目】隨著天氣的逐漸炎熱(如圖1),遮陽傘在我們的日常生活中隨處可見如圖2所示,遮陽傘立柱OA垂直于地面,當(dāng)將遮陽傘撐開至OD位置時(shí),測得∠ODB=45°,當(dāng)將遮陽傘撐開至OE位置時(shí),測得∠OEC=30°,且此時(shí)遮陽傘邊沿上升的豎直高度BC為20cm,求若當(dāng)遮陽傘撐開至OE位置時(shí)傘下陰涼面積最大,求此時(shí)傘下半徑EC的長.(結(jié)果保留根號)
查看答案和解析>>
科目: 來源: 題型:
【題目】在創(chuàng)客教育理念的指引下,國內(nèi)很多學(xué)校都紛紛建立創(chuàng)客實(shí)踐空及創(chuàng)客空間,致力于從小培養(yǎng)孩子的創(chuàng)新精神和創(chuàng)造能力,某校開設(shè)了“3D”打印、數(shù)學(xué)編程、智能機(jī)器人、陶藝制作“四門創(chuàng)客課程記為A、B、C、D,為了解學(xué)生對這四門創(chuàng)客課程的喜愛情況,數(shù)學(xué)興趣小組對全校學(xué)生進(jìn)行了隨機(jī)問卷調(diào)查,將調(diào)查結(jié)果整理后繪制成兩幅均不完整的統(tǒng)計(jì)圖表:
請根據(jù)圖表中提供的信息回答下列問題
(1)統(tǒng)計(jì)表中的a= ,b= ;
(2)“陶藝制作”對應(yīng)扇形的圓心角為 ;
(3)學(xué)校為開設(shè)這四門課程,需要對參加“3D”打印課程每個(gè)人投資200元,預(yù)計(jì)A、B、C、D四門課程每人投資比為4:3:6:5,求學(xué)校開設(shè)創(chuàng)客課程需為學(xué)生人均投資多少錢?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com