相關(guān)習(xí)題
 0  359581  359589  359595  359599  359605  359607  359611  359617  359619  359625  359631  359635  359637  359641  359647  359649  359655  359659  359661  359665  359667  359671  359673  359675  359676  359677  359679  359680  359681  359683  359685  359689  359691  359695  359697  359701  359707  359709  359715  359719  359721  359725  359731  359737  359739  359745  359749  359751  359757  359761  359767  359775  366461 

科目: 來源: 題型:

【題目】閱讀下列材料:

小明遇到一個問題:在中,,三邊的長分別為、、,求的面積.

小明是這樣解決問題的:如圖①所示,先畫一個正方形網(wǎng)格(每個小正方形的邊長為),再在網(wǎng)格中畫出格點(即三個頂點都在小正方形的頂點處),從而借助網(wǎng)格就能計算出的面積.他把這種解決問題的方法稱為構(gòu)圖法.

參考小明解決問題的方法,完成下列問題:

)圖是一個的正方形網(wǎng)格(每個小正方形的邊長為) .

①利用構(gòu)圖法在答卷的圖中畫出三邊長分別為、的格點

②計算①中的面積為__________.(直接寫出答案)

)如圖,已知,以,為邊向外作正方形,連接

①判斷面積之間的關(guān)系,并說明理由.

②若,,,直接寫出六邊形的面積為__________

查看答案和解析>>

科目: 來源: 題型:

【題目】小杰想用6個除顏色外均相同的球設(shè)計一個游戲,下面是他設(shè)計的4個游戲方案.不成功的是(  )

A. 摸到黃球的概率為,紅球的概率為

B. 摸到黃、紅、白球的概率都為

C. 摸到黃球的概率為,紅球的概率為,白球的概率為

D. 摸到黃球的概率為,摸到紅球、白球的概率都是

查看答案和解析>>

科目: 來源: 題型:

【題目】2,2,3,4四個數(shù)中隨機取兩個數(shù),第一個作為個位上的數(shù)字,第二個作為十位上的數(shù)字,組成一個兩位數(shù),則這個兩位數(shù)是2的倍數(shù)的概率是 ( )

A. 1 B. C. D.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖ABC,B90°AB4,BC2,AC為邊作△ACEACE90°,AC=CE延長BC至點D,使CD5連接DE.求證ABC∽△CED

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點 A,B的坐標(biāo)分別為(0,3),(1,0),△ABC是等腰直角三角形,∠ABC=90°.

(1)圖1中,點C的坐標(biāo)為 ;

(2)如圖2,點D的坐標(biāo)為(0,1),點E在射線CD上,過點BBFBEy軸于點F

①當(dāng)點E為線段CD的中點時,求點F的坐標(biāo);

②當(dāng)點E在第二象限時,請直接寫出F點縱坐標(biāo)y的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,直線l1、l2、l3分別交直線l4于點A、B、C,交直線l5于點D、E、F,且l1l2l3 , 已知EF:DF=5:8,AC=24.

(1)求AB的長;

(2)當(dāng)AD=4,BE=1時,求CF的長.

查看答案和解析>>

科目: 來源: 題型:

【題目】一塊材料的形狀是銳角三角形ABC,邊BC=12cm,高AD=8cm,把它加工成矩形零件如圖,要使矩形的一邊在BC上,其余兩個頂點分別在AB,AC上.且矩形的長與寬的比為3:2,求這個矩形零件的邊長.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知:四邊形ABCD,AD∥BC,AD=AB=CD,∠BAD=120°,E是射線CD上的一個動點(與C、D不重合),△ADE繞點A順時針旋轉(zhuǎn)120°,得到△ABE',連接EE'.

(1)如圖1,∠AEE'= °;

(2)如圖2,如果將直線AE繞點A順時針旋轉(zhuǎn)30°后交直線BC于點F,過點EEM∥AD交直線AF于點M,寫出線段DE、BF、ME之間的數(shù)量關(guān)系;

(3)如圖3,在(2)的條件下,如果CE=2,AE=,ME的長.

查看答案和解析>>

科目: 來源: 題型:

【題目】為了探索代數(shù)式的最小值,

小張巧妙的運用了數(shù)學(xué)思想.具體方法是這樣的:如圖,C為線段BD上一動點,分別過點B、D,連結(jié)AC、EC.已知AB=1,DE=5,BD=8,設(shè)BC=x.則,則問題即轉(zhuǎn)化成求AC+CE的最小值.

(1)我們知道當(dāng)A、CE在同一直線上時,AC+CE的值最小,于是可求得的最小值等于 ,此時x= ;

(2)題中小張巧妙的運用了數(shù)學(xué)思想是指哪種主要的數(shù)學(xué)思想;

(選填:函數(shù)思想,分類討論思想、類比思想、數(shù)形結(jié)合思想)

(3)請你根據(jù)上述的方法和結(jié)論,試構(gòu)圖求出代數(shù)式的最小值.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,矩形ABCD中,AB=3,AD=1,AB在數(shù)軸上,若以點A為圓心,對角線AC的長為半徑作弧交數(shù)軸的正半軸于M,則點M的表示的數(shù)為________________

【答案】

【解析】ACAM,∴AM

型】填空
結(jié)束】
11

【題目】ABC中,AB10,AC2BC邊上的高AD6,則另一邊BC等于_______

查看答案和解析>>

同步練習(xí)冊答案