科目: 來源: 題型:
【題目】如圖,在中,,,,點從點出發(fā)沿邊向以的速度移動,點從點出發(fā)沿向點以的速度移動,當其中一個點到達終點時兩個點同時停止運動,在兩個點運動過程中,請回答:
經過多少時間,的面積是?
請你利用配方法,求出經過多少時間,四邊形面積最?并求出這個最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知:如圖,直線與軸、軸分別交于、兩點,兩動點、分別以個單位長度/秒和個單位長度/秒的速度從、兩點同時出發(fā)向點運動(運動到點停止);過點作交拋物線于、兩點,交于點,連結、.若拋物線的頂點恰好在上且四邊形是菱形,則、的值分別為( )
A. 、 B. 、 C. 、 D. 、
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,△ABC中,∠B=90,AB=6cm,BC=8cm.
(1)點P從點A開始沿AB邊向B以1cm/s的速度移動,點Q從B點開始沿BC邊向點C以2cm/s的速度移動.如果P,Q分別從A,B同時出發(fā).
①經過幾秒,使△PBQ的面積等于8?
②線段PQ能否將△ABC分成面積相等的兩部分?若能,求出運動時間;若不能說明理由.
(2)若P點沿射線AB方向從A點出發(fā)以1cm/s的速度移動,點Q沿射線CB方向從C點出發(fā)以2cm/s的速度移動,P,Q同時出發(fā),問幾秒后,△PBQ的面積為1?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,點E在△DBC的邊DB上,點A在△DBC內部,∠DAE=∠BAC=90°,AD=AE,AB=AC.給出下列結論:
①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE2=2(AD2+AB2)﹣CD2.其中正確的是( 。
A. ①②③④ B. ②④ C. ①②③ D. ①③④
查看答案和解析>>
科目: 來源: 題型:
【題目】(1)閱讀理解:
如圖①,在△ABC中,若AB=10,AC=6,求BC邊上的中線AD的取值范圍.
解決此問題可以用如下方法:延長AD到點E使DE=AD,再連接BE(或將△ACD繞著點D逆時針旋轉180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三邊的關系即可判斷.
中線AD的取值范圍是 ;
(2)問題解決:
如圖②,在△ABC中,D是BC邊上的中點,DE⊥DF于點D,DE交AB于點E,DF交AC于點F,連接EF,求證:BE+CF>EF;
(3)問題拓展:
如圖③,在四邊形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以為頂點作一個70°角,角的兩邊分別交AB,AD于E、F兩點,連接EF,探索線段BE,DF,EF之間的數量關系,并加以證明.
查看答案和解析>>
科目: 來源: 題型:
【題目】閱讀探索:“任意給定一個矩形A,是否存在另一個矩形B,它的周長和面積分別是已知矩形周長和面積的一半”?(完成下列空格)
(1)當已知矩形A的邊長分別為6和1時,小亮同學是這樣研究的:
設所求矩形的兩邊分別是x和y.
由題意得方程組:
消去y,化簡得:
∴滿足要求的矩形B存在.
(2)如果已知矩形A的邊長分別為2和1,請你仿照小亮的方法研究是否存在滿足要求的矩形B.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,某地有一座圓弧形的拱橋,橋下水面寬為8米(即AB=8米),拱頂高出水面為2米(即CD=2米).
(1)求這座拱橋所在圓的半徑.
(2)現有一艘寬6米,船艙頂部為正方形并高出水面1.5米的貨船要經過這里,此時貨船能順利通過這座拱橋嗎?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com